

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.2529018

Available online at: <u>http://www.iajps.com</u>

Research Article

FACTORS THAT CAUSE MEMORY IMPAIRMENT AMONG MEDICAL STUDENTS IN TAIBAH UNIVERSITY AT MEDINA, SAUDI ARABIA

Arwa Musaad Alsubhi, Dhiaa Khalid Yones, KhuloudAbdulrhmanAlmughazzawi, Raneem Omar Alqaedi, Zahrah Ibrahim Alsharif

Taibah University

Abstract

Background: Memory, is one of the most fascinating mental capacities for encoding, storing and recalling information. The memory loss is a problem that affects most people. Levels of mental health and well-being difficulties have been found to be high amongst students, with up to 29% of students reporting clinical levels of distress. Medical education can impose significant psychological stress on undergraduates. There are many causes of memory loss, whether it's an occasional forgetfulness or loss of short-term memory that interferes with daily life. Memory problems can be caused by several conditions, including: Brain injuries, dehydration, depression, anxiety, stress, Lack of oxygen to the brain, sleep deprivation, hyperthyroidism or hypothyroidism or even epilepsy and seizures.

Aim: In our research, we aimed tostudythe effect of different factors on memory among medical students.

Materials and methods: This was a cross sectional study carried out on 423 medical students at Taibah University in Medina, Saudi Arabia during June 2018. Ethical approval was obtained from the scientific research ethics committee at Taibah University prior to implementing the study. An electronic questionnairewas collected from medical students from all years and specialties. The data analysis was done by using statistical package for the social sciences (SPSS) version 22.0.

Results: In the total sample (n = 423), a positive correlation between specific diet and low score memory was found, Sig. (2-tailed) = .008. Use of smart phone was shown to be negatively correlated with high memory score (pearson correlation = -.085). Sleep problem variable F = 3.592 was sig at $\alpha \le 0.05$.

Conclusion: In our research a positive correlation was found between dietary intake, sleeping habits, smart phones and memory affection is found. Establishing more researches and campaigns at malls, schools, universities and hospitals to increase the awareness among public about these factors are needed for a better quality of life.

Keywords: Memory, Impairment, Factors, Score, Students

Corresponding author:

Arwa Musaad Alsubhi, Taibah University,

Please cite this article in press Arwa Musaad Alsubhi et al., Factors That Cause Memory Impairment Among Medical Students In Taibah University At Medina, Saudi Arabia., Indo Am. J. P. Sci, 2018; 05(12).

INTODUCTION:

Memory, is one of the most fascinating mental capacities for encoding, storing and recalling information [1]. The memory loss is a problem that affects most people, to a degree. Levels of mental health and well-being difficulties have been found to be high amongst students, with up to 29% of students reporting clinical levels of distress [2]. Medical education can impose significant psychological stress on undergraduates [3].

There are many causes of memory loss, whether it's an occasional forgetfulness or loss of short-term memory that interferes with daily life. Memory problems can be caused by several conditions, including: Brain injuries, dehydration, depression, anxiety, stress, Lack of oxygen to the brain, sleep deprivation, hyperthyroidism or hypothyroidism or even epilepsy and seizures [4].

Smoking also affect memory. Studies have shown that people who smoke find it more difficult to remember names than non-smokers [4]. Those who both smoke and drink alcohol have an impaired ability to think quickly and efficiently. These people show more cortical thinning in the frontal region of the brain – a region of the brain that is important for memory [5].

Good nutrition including high-quality proteins and fats is important to proper brain function. Deficiencies in vitamin B1 and B12 specifically can affect memory [4]. Obesity has been associated with impaired executive functions including working memory. Working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group [6]. Research has also shown that components of working memory, such as vigilance and decision-making, can be affected negatively by acute sleep loss [7]. Exercise can positively impact cognitive functioning and may represent an effective strategy to improve memory in those who have begun to experience cognitive decline [8].

Anxiety disorders can promote a crippling focus upon negative life-events and make concentration difficult, which can lead to problems in both social and work environments. In such situations the state of anxiety can be seen as maladaptive [9].

This research was focused on preventable causes that affect memories and interfere with the daily life of students.

Aim:

Our aim of study was to identify the most important factors that affect the memory of medical students and their educational performance.

METHODOLOGY:

Ethical approval

Ethical approval was obtained from the scientific research ethics committee at Taibah University prior to implementing the study.

Informed consent was obtained voluntarily from students after explaining the aim and nature of the study. Privacy and confidentiality were assured.

Study Design and Setting

This cross-sectional analytical study was conducted among medical students of Taibah University at Medina, Saudi Arabia. The study was carried out during June 2018.

Study Population, Sampling method and size Sampling method

An electronic questionnaire was collected from medical students from all years and specialties.

Inclusion criteria:

All medical students at Taibah University were included.

Exclusion criteria

Non -medical students.

Sample size

The sample size was 432dependenton recent researches carried out on the same topic.

Data Collection Method and Measurements

Data will be collected using an **electronic questionnaire** designed in Englishlanguage, that includes the following sections:

- 1. Section I: Socio-demographic data (age, sex, specialty,weight, etc.)
- 2. Section II: memory scale
- 3. Section III: question about factors that impair memory (diseases, drugs , lifestyle , etc.) .

Data Management and analysis plan

For the data entry and statistical analysis, statistical package for the social sciences (SPSS) version 22.0 will be used.

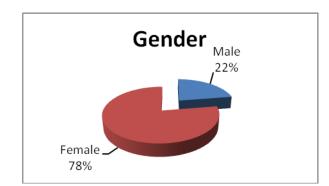
RESULTS:

The study participant's Demographic analysis:

1. Distribution of the participants by Age groups:

Table (1) Distribution of the participants by Age groups

Variable		Frequency	Percent
Age	under21	92	21.7
	21-23	269	63.6
	More 23	62	14.7
	Total	423	100.0

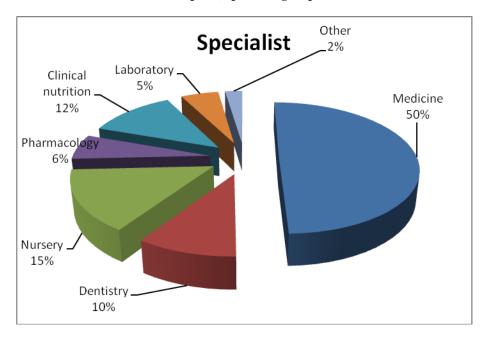

Age	groups
More 23 15%	under21 22%
21-23 63%	
63%	

Graph (1) Age groups

The data show the different age groups(21-23 years) has the highest representation (63%), & age group under 21 years old was (21%.)And age group (more 23 years) represented about (14%) of the total sample.

Distribution of the participants by Gender groups: Table (2) Distribution of the participants by Gender groups

Variable		Frequency	Percent
Gender	Male	95	22.5
	Female	328	77.5
	Total	423	100.0



Graph (2)Gender groups:

Table (2) shows gender groups (Male) has the lowest representation (22.5%), & gender group female (77.5%.).

Distribution of the participants by Specialist groups: Table (3) Distribution of the participants by Specialist groups

Variable		Frequency	Percent
	Medicine	210	49.6
	Dentistry	41	9.7
	Nursery	63	14.9
Specialist	Pharmacology	26	6.1
specialist	Clinical nutrition	51	12.1
	Laboratory	22	5.2
	Other	10	2.4
	Total	423	100.0

Graph (3)Specialist groups

The results show that specialist group (medicine) has the highest representation (49%), & Other specialist was between (2.4% - 14.9%).

Table (4)	descriptive	statistic for	Smoking	variable
	ucscriptive	statistic for	Smoking	variable

Are you a smoker	N	Mean	Std. Deviation	Std. Error Mean
Yes	29(6.8%)	60.28	18.570	3.448
No	394(93.1%)	65.70	15.702	.791

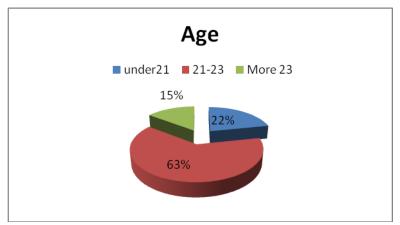
Table (5) t test for smoking variable

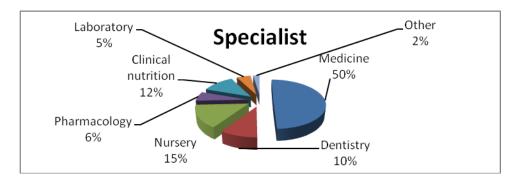
Levene's Test for Equality of Variances		t-test for Equality of Means		
F	Sig.			Sig. (2-tailed)
0.731	0.393	1.773	421	0.077

The table shows the t test of smoking variable is 1.77 which considered not significant.

Age	N	Mean	Std. Deviation	
under21	92	64.35	16.108	
21-23	269	65.34	16.192	
More 23	62	66.76	14.739	
Total	423	65.33	15.949	

Table (6) descriptive statistic for age variable




 Table (7) ANOVA test for Age variable

Source of variance	Sum of Squares	Df	Mean Square	F	Sig.
Age	215.208	2	107.604	0.42	0.66
Within Groups	107126.456	420	255.063		
Total	107341.664	422			

The table above shows age variable F=0.42 which considered not significant.

Table (8) descriptive statistic for Specialist variable

Specialist	Ν	Mean	Std. Deviation
Medicine	210	67.31	15.692
Dentistry	41	64.32	16.108
Nursing	63	59.29	17.414
Pharmacology	26	63.27	16.163
Clinical nutrition	51	68.55	12.635
Laboratory	22	60.86	16.921
Other	10	64.80	14.620
Total	423	65.33	15.949

Graph (5)Specialist groups

Table (9) ANOVA test for Specialist variable

Source of variance	Sum of Squares	df	Mean Square	F	Sig.
Specialist	4247.114	6	707.852	2.856	0.01
Within Groups	103094.550	416	247.823		
Total	107341.664	422			

The table above shows specialist variable F= 2.856 which considered significant. To know for which specialist Scheffe test was used and table (10) shows that.

-	able (10) Schene test con			
(I) Specialist	(J) Specialist	Mean Difference (I- J)	Std. Error	Sig.
Medicine	Dentistry	2.992	2.688	0.975
	Nursing	8.024*	2.261	0.05
	Pharmacology	4.040	3.273	0.958
	Clinical nutrition	-1.239	2.458	1.000
	Laboratory	6.446	3.528	0.765
	Other	2.510	5.095	1.000
Dentistry	Nursing	5.031	3.159	0.864
•	Pharmacology	1.048	3.947	1.000
	Clinical nutrition	-4.232	3.302	0.949
	Laboratory	3.453	4.160	0.995
	Other	483	5.552	1.000
Nursing	Pharmacology	-3.984	3.670	0.978
	Clinical nutrition	-9.263	2.965	0.138
	Laboratory	-1.578	3.899	1.000
	Other	-5.514	5.359	0.983
Pharmacology	Clinical nutrition	-5.280	3.794	0.925
	Laboratory	2.406	4.560	1.000
	Other	-1.531	5.858	1.000
Clinical nutrition	Laboratory	7.685	4.015	0.722
	Other	3.749	5.444	0.998
Laboratory	Other	-3.936	6.004	0.999

Table (10) Scheffe test comparisons between specialist variable

From table above it shows there are no sig for most specialists, except between Medicine & Nursing and it was for Medicine.

	Table (11) descriptive statistic for gender variable					
gender	Ν	Mean	Std. Deviation			
Male	95	67.63	17.560			
Female	328	64.66	15.416			

Table (11) descriptive statistic for gender variable

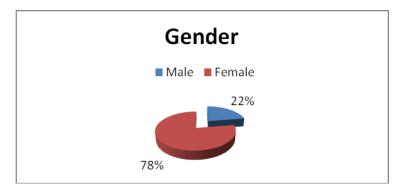
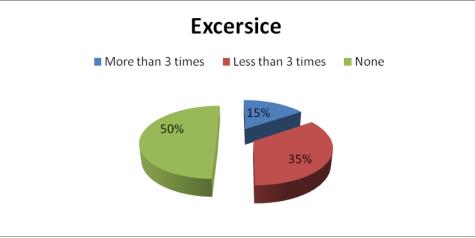


 Table (12) t test for gender variable


Levene's Test for Equality of Variances		t-test for Equality of Means		
F	Sig.	t	df	Sig. (2-tailed)
0.592	0.442	1.600	421	0.110

The table shows gender variable t= 1.60 which considered not significant.

Table (13) descriptive statistic for Exercise variable

	N		
Exercise	N	Mean	Std. Deviation
More than 3 times	66	67.58	17.444
Less than 3 times	147	63.56	15.593
None	210	65.87	15.653
Total	423	65.33	15.949

Graph (7)Exercise variable

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	855.018	2	427.509	1.686	0.186
Within Groups	106486.646	420	253.540		
Total	107341.664	422			

Table (14) ANOVA test for exercise variable

The table above shows exercise variable F= 1.686 which considered not significant.

Table (15) descriptive statistic for Time spend on smart phones variable

Time spend on smart				
phones	Ν	Mean	Std. Deviation	
1-5 hours	197	65.55	16.387	
5-10	137	66.53	14.594	
More than 10	89	63.00	16.873	
Total	423	65.33	15.949	

Graph (8)Time spend on smart phones

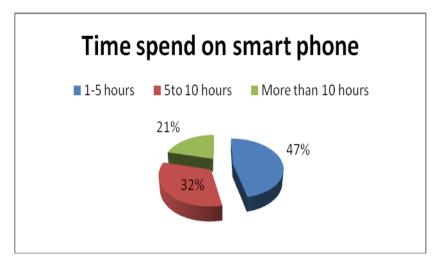


 Table (16) ANOVA test for Time spend on smart phones variable

Time spend on smart					
phones	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	690.770	2	345.385	1.360	0.258
Within Groups	106650.894	420	253.931		
Total	107341.664	422			

The table shows smart phones variable F= 1.360 which considered not significant.

sleep problem	Ν	Mean	Std. Deviation
Inadequate sleeping hours (less than 8 hours /day	157	62.50	16.465
Insomnia	27	62.85	17.963
Obstructive sleep apnea	12	60.50	22.387
None	202	68.33	14.666
Other	25	63.88	13.461
Total	423	65.33	15.949

Table (17) descriptive statistic for Time spend on sleep problem variable

Graph	(9)	Sleeping	problem
-------	-----	----------	---------



 Table (18) ANOVA test for sleep problem variable

sleep problem	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3566.933	4	891.733	3.592	0.007
Within Groups	103774.731	418	248.265		
Total	107341.664	422			

From the table above it shows sig for sleep problem variable F=3.592 its sig at $\alpha \le 0.05$. That mean sleep problem is a common factor that affects memory among students.

Scheffe				
(I)	(J)	Mean Difference (I- J)	Std. Error	Sig.
Inadequate sleeping hours	Insomnia	349	3.283	1.000
(less than 8 hours /day	Obstructive sleep apnea	2.003	4.719	0.996
	None	-5.824*	1.676	0.018
	Other	-1.377	3.393	0.997
Insomnia	Obstructive sleep apnea	2.352	5.467	0.996
	None	-5.475	3.229	0.579
	Other	-1.028	4.373	1.000
Obstructive sleep apnea	None	-7.827	4.682	0.593
	Other	-3.380	5.533	0.985
None	Other	4.447	3.341	0.778

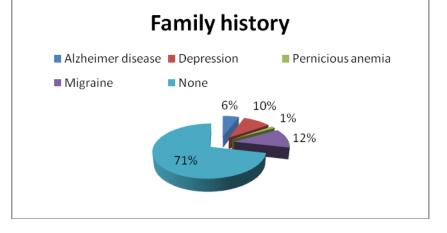
Table (19) Scheffe test comparisons between sleep problem variable

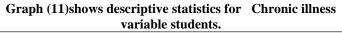
From the table above it shows no sig for comparison between sleep problem variable.

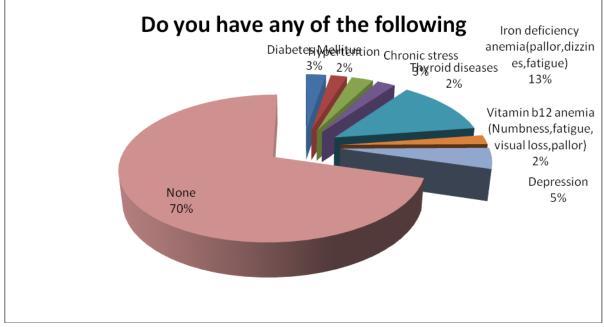
Table (20) descriptive statistic for Family history variable

Family history	Ν	Mean	Std. Deviation
Alzheimer disease	24	58.96	20.626
Depression	41	64.20	15.434
Pernicious anemia	6	66.67	8.501
Migraine	50	64.66	14.201
None	302	66.08	15.948
Total	423	65.33	15.949

Graph (10)shows descriptive statistics Family history variable



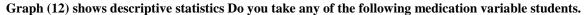

Table (21) ANOVA test for Family history of chronic diseases variable


Family history	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1228.465	4	307.116	1.210	0.306
Within Groups	106113.199	418	253.859		
Total	107341.664	422			

The table shows Family history of chronic diseases variable F= 1.360 which considered not significant .

Do you have any of the following	Ν	Mean	Std. Deviation
Diabetes Mellitus	11	65.00	14.866
Hypertension	9	54.56	22.716
Chronic stress	12	65.00	14.685
Thyroid diseases	10	54.60	14.894
Iron deficiency anemia(pallor,dizziness,fatigue)	54	68.17	15.315
Vitamin b12 anemia (Numbness,fatigue,visual loss,pallor)	9	62.44	13.001
Depression	20	63.05	17.581
None	298	65.77	15.796
Total	423	65.33	15.949

Table (22) descriptive statistic for Chronic illness



Chronic illness	Sum of Squares	Df	Mean Square	F	Sig.
Between Groups	2869.346	7	409.907	1.628	0.126
Within Groups	104472.318	415	251.741		
Total	107341.664	422			

The table above shows Chronic illnessvariable F= 1.628 which considered not significant.

Do you take any of				
the following				
medication	Ν	Mean	Std. Deviation	Std. Error
Anti-depressant	9	61.33	22.051	7.350
Anti-convulsion	2	59.00	5.657	4.000
Anti-anxiety	9	48.44	17.671	5.890
None	403	65.83	15.616	.778
Total	423	65.33	15.949	.775

Table (24) descriptive statistic for medication history

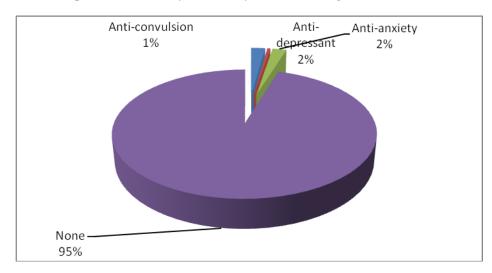
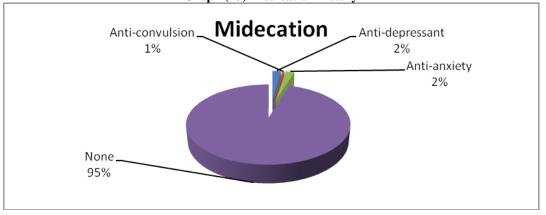



 Table (25) :Kruskal Wallis test medication history

Ranks					
Medication	Ν	Mean Rank	Chi-Square	df	Asymp. Sig.
Anti-depressant	9	200.06	9.106	3	0.03
Anti-convulsion	2	136.00			
Anti-anxiety	9	97.00			
None	403	215.21			
Total	423				

The table shows medication history variable chi= 9.6106 which considered significant. Graph (13) Medication history

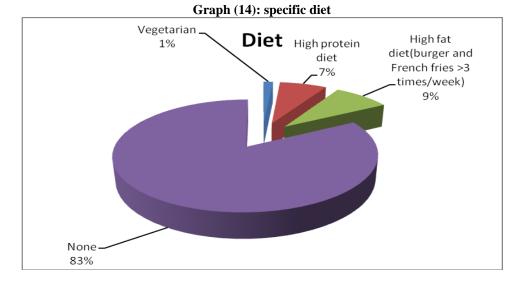

Multiple Compar	risons			
Scheffe				I
(I)	(J)	Mean Difference (I-J)	Std. Error	Sig.
Anti-depressant	Anti-convulsion	2.33	12.343	0.998
-	Anti-anxiety	12.89	7.443	0.393
	None	-4.50	5.321	0.870
Anti-convulsion	Anti-anxiety	10.56	12.343	0.866
	None	-6.83	11.192	0.946
Anti-anxiety	None	-17.38*	5.321	0.014

Table (26) Scheffe test comparisons between medication variable

From the table above it shows no sig for comparison between medications variable. Except between (Antianxiety) & none and it was for none.

Table (27) descriptive statistic for specific diet

specific diet	Ν	Mean	Std. Deviation
Vegetarian	6	62.83	24.145
High protein diet	30	67.53	17.851
High fat diet(burger and French fries >3 times/week)	36	59.25	17.382
None	351	65.81	15.401
Total	423	65.33	15.949

Table (28) ANOVA test for specific diet variable

specific diet	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1594.403	3	531.468	2.106	.099
Within Groups	105747.261	419	252.380		
Total	107341.664	422			

The table shows specific diet variable F= 2.106 which considered not significant.

Situations	N	Minimum	Maximum	Mean	Std. Deviation
Forgetting where you have put					
something. Losing things around	423	1	5	2.72	0.98
the house	123	1	5	2.72	0.70
Failing to recognize places that					
you have been before	423	1	5	3.59	1.15
Finding a television story					
difficult to follow	423	1	5	3.74	1.17
Not remembering a change in					
your daily routine, such as a					
change in the place where					
something is kept, or a change in	423	1	5	3.37	1.21
the time something happens.	423	1	5	5.57	1.21
following your old routine by					
mistake.					
Having to go back to check	402	1	F	2.60	1 17
whether you have done	423	1	5	2.60	1.17
something that you meant to do.					
Completely forgetting to take					
things with you, or leaving things	423	1	5	2.88	1.05
behind and having to go back and		-	-		
fetch them.					
Forgetting that you were told					
something yesterday or a few	423	1	5	2.86	1.17
days ago and having to be	123	1	5	2.00	1.17
reminded about it.					
Starting to read something (book					
,newspaper, magazine) without	423	1	5	3.61	1.26
realizing you have already read it	423	1	5	5.01	1.20
•					
Having difficulty picking up a					
new skill. For example, finding it					
hard to learn a new game or to	423	1	5	3.60	1.25
work a new gadget after you have					
practiced it once or twice .					
Finding that a word is " on the tip					
of your tongue" You know what	423	1	5	2.79	1.10
it is but you can't quite find it.					
Forgetting details of what you did					
or what happened to you the day	423	1	5	3.20	1.17
before.					
When talking to someone					
,forgetting what you have just	102	1	F	2.04	1 10
said. Maybe saying "what was i	423	1	5	3.04	1.18
talking about?					
When reading a newspaper or					
magazine ,being unable to follow			_		1.07
the thread of a story ,losing track	423	1	5	3.28	1.25
of what it is about.					
Getting the details of what					
someone has told you mixed up	423	1	5	3.11	1.10
and confused.	.23	`		5.11	1.10
and confused.					

Table (29) shows means and SD for Memory score

ISSN 2349-7750

Telling someone a story or joke that you have told them already.	423	1	5	3.16	1.20
Forgetting details of things you do regularly ,whether at home or at work, for example, forgetting details of what to do or what time it is.	423	1	5	3.52	1.17
Forgetting where things are normally kept or looking for them in the wrong place.	423	1	5	3.40	1.21
Getting lost or turning in the wrong direction on a journey, on a walk or in a building where you have been before .	423	1	5	3.47	1.19
Repeating to someone what you have just told them or asking them the same question twice.	423	1	5	3.36	1.19
Doing some routine things twice by mistake. For example, putting two bags of tea in the teapot ,or brushing your hair when you have just done so.	423	1	5	4.02	1.15

Table (30) Is there a correlation between low memory score and Risk factors

Variable		
Smoking	Pearson Correlation	.102
	Sig. (2-tailed)	.213
	Ν	151
Exercise	Pearson Correlation	.035
	Sig. (2-tailed)	.669
	Ν	151
for Time spend on smart phones	Pearson Correlation	085
	Sig. (2-tailed)	.298
	Ν	151
sleep problem	Pearson Correlation	.098
	Sig. (2-tailed)	.230
	Ν	151
Family history	Pearson Correlation	.031
	Sig. (2-tailed)	.709
	Ν	151
Chronic illness	Pearson Correlation	.058
	Sig. (2-tailed)	.482
	Ν	151
Medication history	Pearson Correlation	.110
-	Sig. (2-tailed)	.177
	N	151
specific diet	Pearson Correlation	.217**
	Sig. (2-tailed)	.008

The table shows a positive correlation between specific diet and high score.

And it shows no correlation between other factors on memory

Smoking	Pearson Correlation	.055
C	Sig. (2-tailed)	.365
	N	272
Exercise	Pearson Correlation	082
	Sig. (2-tailed)	.178
	N	272
for Time spend on smart phones	Pearson Correlation	134*
	Sig. (2-tailed)	.027
	Ν	272
sleep problem	Pearson Correlation	.056
	Sig. (2-tailed)	.357
	Ν	272
Family history	Pearson Correlation	.023
	Sig. (2-tailed)	.710
	Ν	272
Chronic illness	Pearson Correlation	015
	Sig. (2-tailed)	.802
	Ν	272
Medication history	Pearson Correlation	.009
	Sig. (2-tailed)	.883
	N	272
specific diet	Pearson Correlation	.016
	Sig. (2-tailed)	.789
	Ν	272

Table (31) Is there correlation between high score of memory and Risk factors

From table (31) shows a negative correlation between Time spend on smart phones & high score of memory, and it show no correlation between other factors on memory.

DISCUSSION:

In this study, we aimedat evaluating the factors that could impair the memory of medical students in Taibah University.

We found that there was positive correlation between sleep problem and memory impairment among students. Similar research has studied the relation between performance and sleep loss showed the same result [7] which means that is improving sleep habits will improve the memory.

The study also showed that students who spend less time on smart phones (less than 5 hours per day) has higher score on memory scale compared to other students who spend much more time (more than 5 hours per day) on smart phones. Previous researchstudies indicated that there wasan association between decreased attention andheavysmart phone usage [10]. Although there is an obvious deficient in the data and study that clearly explain the mechanism of how smart phone affecting memory, the recommendation is to reduce the time spent on smart phone, video games as much as you can.

It was found that exercise is not a common factor that affects memory among students. Comparing to other researches exercise can positively impact cognitive function and may improve memory. This discrepancy could be explained by lack of regular exercise with studied groups . Indeed, lack of gyms and suitable places to do activities especially for women and hot weather could play a rule in lazy lifestyle [11].

We found that smoking doesn't play any role in affecting the memory mainly this could be explained by high number of females (328) compared to males (95). Although it is unclear exactly how smoking may interfere with memory, research has shown that chronic smoking is linked to a breakdown, or atrophy of parts of the brain [12].

Previous research studied the effect of smoking on prospective memory yielded mixed results, some results showing smokers were worse off, and others showing no effect from smoking [12].

In this study we found that there was no correlation between medical illnesses and memory loss among medical students.

In other studies, it found that general medical diseases may also lead to an impairment of memory, e.g., diabetes mellitus and obstructive sleep apnea (OSA) [13].

In another study, it was revealed that, In multivariable regression models that included age, sex, education, hypertension, BMI, HbA1c, and depressive symptoms, anemia were associated with slower processing speed and working memory (Digit Span Task) but not executive functioning, verbal learning, or memory [14].

We believe that these differences between studies are due to lack of standard evaluation of each disease on memory loss.

In general, patients with chronic illnesses may not show any problem in memory if they are controlled and do not have any complications.

Our results indicatedthat medication is not a factor affecting the memory among medical students. Comparing to other study results, some medication like benzodiazepine, Selective serotonin reuptake inhibitors antidepressants and newer anticonvulsants showed a strong association with memory disorder [15]. We think using these medications for a long term and also the age is considered important associated factors in drug-induced memory loss comparing to average age of our study group which was with younger agesand that's need a long-term study.

Results from this study indicate that there is no significant association between specific diet and memory in the studied groups. Majority of students (83%) claimed that they are not following a specific regimen; however, they are not receiving healthy diet. Caffeine containing drinks, carbohydrates rich or sugary products could probably be largely consumed by these students, which of all were related to mood, memory and general performance affection to certain extents. Across-sectional study carried by Fracis et al [16]. concluded that high fat and sugar diets can cause poorer performance on hippocampal sensitive memorv tasks.Moreover, habitual caffeine consumption via coffee and tea was strongly related to better long-term memory over different age group, a study agreed by Hameleers et al. This suggests that students who consume coffee in regular basis are

more likely to show higher performance on memory tasks on the long-term over those who do not [17].

CONCLUSION & RECOMMENDATION:

In this study we aimed at studying the effect of different factors on memory in medical student at Taibah University in Al-Madinah. We found that smart phone using, sleeping habits and diet impact the memory significantly. According to this study, the recommendation to increase the awareness in the population by doing more campaigns in malls and hospitals to educate the people about the factors that could improve or impair their memory which affect the quality of their life.

Since there's a marked deficiency in researches covering this field, more evidence-based researches are needed in this area to clear the mechanism of how these factors affecting the memory.

REFERENCES:

- Deuker L, Olligs J, Fell J et al. (2013): Memory consolidation by replay of stimulus-specific neural activity. *Journal of Neuroscience*, 33(49): 19373-19383.
- 2. Webb E, Ashton C, Kelly P, Kamali, F (1996): Alcohol and drug use in UK university students. *The lancet*, *348*(9032): 922-925
- 3. Dubbert P, Grothues C, Pinto B (1994): Stress, Coping, and Well~ being among Thirdyear Medical Students. *Academic Medicine*, 69(9): 765-767.
- 4. Memory Loss WebMD article, reviewed. (2017, August 9): Retrieved from https://www.webmd.com/brain/memory-loss
- Marshall A, Heffernan T, Hamilton C (2017, January 08): How smoking and drinking have a huge negative impact on your everyday memory. Retrieved from https://www.newsweek.com/smoking-drinkingmemory-loss-brain-537977
- 6. Coppin G, Nolan-Poupart S, Jones-Gotman M, Small DM (2014): Working memory and reward association learning impairments in obesity. Neuropsychologia, 65: 146-155.
- Reichert CF, Maire M, Schmidt C, Cajochen C (2016): Sleep-wake regulation and its impact on working memory performance: the role of adenosine. Biology, 5(1): 11.
- 8. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, Liu-Ambrose T (2013): Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. Journal of aging research, 2013

- Robinson OJ, Vytal K, Cornwell BR, Grillon C (2013): The impact of anxiety upon cognition: perspectives from human threat of shock studies. Frontiers in Human Neuroscience, 7, 203.
- 10. Adar A, Hadas I, Lazarovits A, Alyagon U, Eliraz D, Zangen A (2017): Answering the missed call: Initial exploration of cognitive and electrophysiologicalchanges associated with smartphone use and abuse. PLoS ONE12(7): e0180094.
- 11. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss M W, Liu-Ambrose T (2013): Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. Journal of aging research, 2013.
- 12. Heffernan T, O'Neill T, Moss M (2010):Smoking and everyday prospective memory: a comparison of self-report and objective methodologies. Drug and alcohol dependence, 112(3): 234-238.
- Sorbi S, Hort J, Erkinjuntti T, Fladby T, Gainotti G , Gurvit H , Scheltens P (2012):EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. European Journal of Neurology,19(9): 1159-1179. doi:10.1111/j.1468-1331.2012.03784.x
- 14. Jonassaint CR, Varma VR, Chuang Y, Harris GC, Yasar S, Polinder-Bos H, Carlson MC (2014):Lower Hemoglobin is Associated with Poorer Cognitive Performance and Smaller Brain Volume in Older Adults. Journal of the American Geriatrics Society,62(5): 972-973. doi:10.1111/jgs.12810
- 15. Chavant F, Favrelière S, Lafay-Chebassier C, Plazanet C, Pérault-Pochat M (2011): Memory disorders associated with consumption of drugs: Updating through a case/noncase study the French PharmacoVigilance in Database. British Journal of Clinical 898-904. Pharmacology,72(6): doi:10.1111/j.1365-2125.2011.04009.x
- Francis HM, Stevenson R J (2011): Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behavioral Neuroscience,125(6): 943-955. doi:10.1037/a0025998
- 17. Hameleers PA, Boxtel MP, Hogervorst E, Riedel WJ, Houx PJ, Buntinx F, Jolles J (2000): Habitual caffeine consumption and its relation to memory, attention, planning capacity

and psychomotor performance across multiple age groups. Human Psychopharmacology: Clinical and Experimental,15(8):573-581. doi:10.1002/hup.218