

CODEN [USA]: IAJPBB ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187 http://doi.org/10.5281/zenodo.4405108

Avalable online at: http://www.iajps.com

Research Article

EFFECTS OF BLOOD PRESSURE IN IOP IN PRIMARY OPEN ANGLE GLAUCOMA

Dr Sobia Rafiq¹, Dr Muhammad Junaid², Dr Muhammad Saleem³

1, ²Services Institute of Medical Sciences.

Article Received: October 2020 Accepted: November 2020 Published: December 2020

Abstract:

Introduction: Glaucoma is commonly defined as optic neuropathy characterized by progressive loss of retinal ganglion cells (RGCs) which is associated with characteristic structural damage to the optic nerve and visual field loss. **Aims and objectives:** The main objective of the study is to analyze the effect of blood pressure on intraocular pressure in primary open angle glaucoma patients.

Material and methods: This cross section study was conducted I SIMS during January 2019 to November 2019. The age group for this study were 40 to 80 years. For every eligible patient, clinical evaluation was conducted were recorded in a database. Information collected includes the subject's age, sex, refraction, IOP, and central corneal thickness.

Results: There were total of 220 cases which were included in this study. There were 106 male and 114 female patients which were included in this study. In this study, there were 81 (36%) participants with HTN, 21 (9.5%) with DM, and 15 (6.8%) with HTN. We analyzed these groups differently as a single and combined risk factor for severity, comparing it with the patients with POAG without either of the conditions.

Conclusion: It is concluded that patients with HTN had a more severe form of POAG when compared with the participants without these risk factors. Patients with these risk factors could represent "high-risk patients" and should be identified and be explained about the condition.

Corresponding author:

Dr. Sobia Rafiq,

Services Institute of Medical Sciences.

Please cite this article in press Sobia Rafiq et al, Effects Of Blood Pressure In Iop In Primary Open Angle Glaucoma., Indo Am. J. P. Sci, 2020; 07(12).

INTRODUCTION:

Glaucoma is commonly defined as optic neuropathy characterized by progressive loss of retinal ganglion cells (RGCs) which is associated with characteristic structural damage to the optic nerve and visual field loss. Risk factors related to glaucoma include intraocular pressure (IOP), age, family history, clinical appearance of the optic nerve, race, and potential vascular disease¹. Although the mechanism of RGC death is not fully understood, elevated IOP is considered the most important risk factor². Several large randomized clinical trials showed a relationship between IOP and glaucoma development and progression. Besides the mechanical effect of raised IOP on the optic nerve head (ONH), several vascular factors have also been identified as risk factors³. Such factors can lead to hypoperfusion of the ONH and may thus play an important role in the pathogenesis and progression of primary open-angle glaucoma (POAG)4. Glaucoma is the second most common cause of blindness worldwide⁵. It is a major global issue, causing significant ocular morbidity and disability due to its progressive nature resulting in an irreversible visual loss. Due to its chronicity, it is often also dubbed as a "silent killer" of the eye. Patients are usually asymptomatic until very advanced stage, making visual loss irrecoverable by the time they present to an ophthalmologist⁶. One of its variant and the most common form primary open-angle glaucoma (POAG) is a chronic, progressive, and anterior optic neuropathy that is associated with characteristic cupping and atrophy of the optic disc, visual field loss, open angles, and no obvious causative ocular or systemic conditions7. POAG accounts for nearly three-quarters (74%) of all glaucoma cases⁸.

Aims and objectives:

The main objective of the study is to analyze the effect of blood pressure on intraocular pressure in primary open angle glaucoma patients.

MATERIAL AND METHODS:

This cross section study was conducted I SIMS during January 2019 to Novmber 2019. The age group for this study were 40 to 80 years. Patients having a narrow angle in either eye or with PACG or any history of intraocular surgery (eg, vitreo-retinal procedures, glaucoma filtration surgeries), with secondary openangle-closure glaucoma, inflammatory glaucoma, acute congestive glaucoma, and optic disc anomalies were included in this study.

For every eligible patient, clinical evaluation was conducted were recorded in a database. Information collected includes the subject's age, sex, refraction, IOP, and central corneal thickness. Furthermore, the medical, ocular, surgical, and medication histories of the subjects were obtained from patient files and recorded. Medical conditions were confirmed usually via correspondence from general practitioners, optometrist, or previous treating ophthalmologists.

Statistical analysis

Data were analyzed using SPSS 20 software (USA) after matching age, sex, and duration of the POAG among the participants.

RESULTS:

There were total of 220 cases which were included in this study. There were 106 male and 114 female patients which were included in this study. In this study, there were 81 (36%) participants with HTN, 21 (9.5%) with DM, and 15 (6.8%) with HTN. We analyzed these groups differently as a single and combined risk factor for severity, comparing it with the patients with POAG without either of the conditions.

Table 1: Age and sex distribution of POAG

Age, years	Sex	Sex	
	Male	Female	-
41–50	14	21	35 (15.8)
51–60	31	22	53 (23.9)
61–70	25	26	51 (23.1)
71–80	15	22	37 (16.7)
81–90	0	1	1 (0.4)
Total (%)	106 (48.1)	114 (51.9)	221 (100)

Figure 01: Distribution of patients according to age and gender

The mean IOP at CI of 95% was comparable while the mean visual field defect (VFD) (Table 2) of the participants with HTN had tendency of being categorized under moderate VFD, in contrast, to mean VFD among participants without HTN, which has tendency of categorizing them under mild VFD. The CDR of the patients with HTN was also comparatively larger than the participants without HTN at CI of 95%.

Table 2: Ocular findings of patients of POAG with and without HTN

		Patients with HTN	Patients without HTN
IOP	Mean	15.0	15.7
	95% CI for mean, <i>p</i> <0.05	14.2 to 15.9	14.9 to 16.5
HVFA	Mean	-8.39	-4.85
	95% CI for mean <i>p</i> <0.05	-11.1 to -5.64	-5.83 to -3.86
POAG	Mean	0.71	0.61
	95% CI for mean <i>p</i> <0.05	0.62 to 0.81	0.58 to 0.65

DISCUSSION:

We have found that change in IOP is directly and significantly associated with changes in systemic blood pressures. This would suggest that treatment of blood pressure might have an effect on risk of developing glaucoma, as IOP is probably the most important risk factor for glaucoma in general populations⁸. We have previously shown that those with higher IOP at baseline were more likely to have larger cup:disc ratio 5 years later⁹. While our findings do not directly indicate a beneficial effect of reduced blood pressure on the risk of glaucoma, they are compatible with that possibility.

Among vascular factors, it has been long postulated that systemic HTN may cause increases in IOP mainly via overproduction from ciliary body or impaired outflow of aqueous humor¹⁰. However, this relationship remains inconclusive and under debate. While some studies highlight that systemic HTN is a

risk factor for glaucoma, other studies indicate that low systemic BP is more dangerous and poses a serious risk for the development and progression of glaucoma. In this study, 81 (36%) participants had HTN¹¹.

CONCLUSION:

It is concluded that patients with HTN had a more severe form of POAG when compared with the participants without these risk factors. Patients with these risk factors could represent "high-risk patients" and should be identified and be explained about the condition.

REFERENCES:

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-

- analysis. Ophthalmology. 2014;121(11):2081–2090.
- Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, EMGT Group Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–1972.
- Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna– Neumarkt Study. Ophthalmology. 2000;107(7):1287– 1293.
- Dielemans I, Vingerling JR, Wolfs RC, Hofman A, Grobbee DE, de Jong PT. The prevalence of primary openangle glaucoma in a populationbased study in the Netherlands. The Rotterdam Study. Ophthalmology. 1994;101(11):1851– 1855.
- Dielemans I, Vingerling JR, Algra D, Hofman A, Grobbee DE, de Jong PT. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology. 1995;102(1):54–60.

- 6. Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R, Los Angeles Latino Eye Study Group Blood pressure, perfusion pressure, and openangle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2010;51(6):2872–2877.
- Kong GY, Van Bergen NJ, Trounce IA, Crowston JG. Mitochondrial dysfunction and glaucoma. J Glaucoma. 2009;18(2):93–100.
- 8. Clermont AC, Bursell SE. Retinal blood flow in diabetes. Microcirculation. 2007;14(1):49–61.
- 9. Ciccone MM, Scicchitano P, Cameli M, et al. Endothelial function in pre-diabetes, diabetes and diabetic cardiomyopathy: a review. J Diabetes Metab. 2014;5:364.
- Hodapp E, Parrish RK, II, Anderson DR. Clinical Decisions in Glaucoma. St Louis, MO, USA: Mosby-Year Book, Inc; 1993.
- 11. Henderer JD, Altangerel U, Magacho L, et al. A new visual field staging system for glaucoma: observer agreement compared to three other systems. Paper presented at: The 13th Annual Meeting of the AGS; March 8, 2003; San Francisco, CA, USA.