

CODEN [USA]: IAJPBB

ISSN: 2349-7750

# INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.3351355

Available online at: <u>http://www.iajps.com</u>

**Research Article** 

# A DESCRIPTIVE STUDY TO KNOW PATHOGENS CAUSING NEONATAL SEPTICEMIA AND ITS MICROBIAL SENSITIVITY

Dr. Leena Syed<sup>1</sup>, Dr. Amna Riaz<sup>2</sup>, Dr. Saif ur Rehman<sup>3</sup>, Dr. Zahoor Ahmed<sup>4</sup>

Quaid-e-Azam Medical College, Bahawalpur

<sup>2</sup> House Officer, Allied Hospital, Faisalabad <sup>3,4</sup> King Edward Medical University, Lahore

## Abstract:

**Objective**: To know the most common organisms causing neonatal septicemia and its antimicrobial sensitivity in Neonatal Intensive Care Unit of Shalimar Medical College Lahore.

*Methodology*: A prospective descriptive study was conducted in the Pediatrics Department of Shalimar Medical College Lahore for three months period from March 2019 to May 2019. The patients were divided into two groups with septicemia in early and late onset.

**Results**: 33 infants from 248 cases with an infection frequency of 13.5% had positive blood cultures. E. coli, coagulase negative staphylococci and Klebsiella are the common bacteria causing septicemia. These isolates are more sensitive to amikacin, meropenem, chloramphenicol, vancomycin, ciprofloxacin and 3rd generation cephalosporin. The greater frequency of isolated pathogens were taken with 52.9% infection rate for early-onset sepsis and for late sepsis 84.5%. **Conclusion**: There is no difference in the coagulase negative staphylococcus prevalence (57.3%), Klebsiella spp, E. coli (10.4%) and septicemia (early onset sepsis and end onset). Meropenem was the most effective antibiotic for gramnegative isolates, while against Gram positive isolates vancomycin is very beneficial. Key Words: Neonate, Septicemia, early sepsis, late-onset sepsis, antimicrobial activity.

**Corresponding author:** 

## Dr. Leena Syed,

Quaid-e-Azam Medical College, Bahawalpur E-mail: leenasyed.ls@gmail.com



Please cite this article in press Leena Syed et al., A Descriptive Study To Know Pathogens Causing Neonatal Septicemia And Its Microbial Sensitivity., Indo Am. J. P. Sci, 2019; 06(07).

## **INTRODUCTION:**

Neonatal septicemia is a clinical syndrome characterized by systemic symptoms and signs in the first month of life. The most common cause of mortality and morbidity worldwide in children is Neonatal sepsis, with 20% of all babies developing sepsis and 30-50% of all neonatal deaths in developing countries <sup>[1]</sup>. In the newborn, sepsis refers to the generalized bacterial infection recorded with positive blood culture in the first month of life and in Pakistan is the fourth main cause of neonatal death with septicemia. Antibiotic age after 90%. The introduction of antibiotics, however, has fallen by 24- 58% [2] .Neonatal septicemia is a life endangering condition and requires treatment and prompt diagnosis in emergency. In developing countries. The most common causes of referral to neonatal units is Neonatal sepsis. Approximately 51-89% of all neonatal mortality in the Pakistani population are caused by infections involving 23 to 60% sepsis and pneumonia, depending on infectious causes and all applications to the neonatal unit <sup>[3-4]</sup>. The pattern of organisms that cause neonatal sepsis changes with passage of time and probably changes from one region to another due to life style modification. In 1960, Europe and America the most common causes of neonatal sepsis are Gram-negative microorganisms when coagulase negative staphylococci when they passed into group B streptococci in the 1970s. Years, eighty and ninety <sup>[6]</sup>. In many developing countries, sepsis most commonly caused by gram-negative organisms of early onset neonatal sepsis. The most frequently isolated microorganisms, Enterococcus, Staphylococcus aureus and coagulase-negative staphylococci containing other organisms in hospitalized patients are positive for blood cultures [7-<sup>8]</sup>. Today, especially in Asia and other countries, gramnegative organisms and sepsis are reported. Bacteria travels through the bloodstream and the infection can spread to other organs such as the lungs, liver, intestines, joints and kidneys. The problem of resistance to bacterial antibiotics occurred when the first antibiotic was available for clinical use. Over the past two decades, antibiotics have developed numerous drug resistance <sup>[9]</sup>. The classification of neonatal septicemia is useful because it makes it easy to take into account the common causality principles, treatment and presentation. Two septicemia patterns described in early-onset EOS (EOS) and late-onset EOS (LOS) in the first month of life. The infection occurring within the first 2days of life is usually labeled as early onset infection although it is between 24 hours and 1 wee <sup>[10]</sup>. This category of infection is usually caused by mother or microorganisms derived from prenatal delivery. Generally, early membrane rupture is associated with obstetric complications such as chorioamnionitis, perinatal maternal fever and premature labor. Most affected babies have early or low birth weight, and through the birth canal pathogens are usually transferred.

#### **MATERIALS AND METHODS:**

This prospective descriptive study was conducted in the Peadtrics Department of Shalimar Medical College Lahore for three months period from March 2019 to May 2019. 248 samples newborn blood samples were collected in the NICU within 28 days and clinical diagnosis of septicemia was made. Each aseptic measure of blood samples was taken in blood culture and susceptibility studies were inoculated into bottles containing Trypticase Soy Broth for aerobic bacteria isolation. At 37 ° C the blood culture are incubated and sub cultured on a solid medium (blood agar and chocolate agar MacConckey) for 24 hours and after 48 hours. The isolates were determined by conventional biochemical methods and Gram staining. Antibiotic susceptibility testing: Pathogens were analyzed and isolated for antibiotic susceptibility testing. The procedure used is mainly the disk diffusion method, which depends on minimum inhibitory concentration and the measurement of inhibition regions are made. Vaccine Muller was implanted in the Hinton medium, calibrated the pathogen at a standard concentration of 0.5 McFarland, and antibiotic discs were placed on the plate surface. The resistant was measured at 37  $^{\circ}$  C after incubation for 24 hours. Each newborn included clinical information, newborn name, body weight, acceptance date, pregnancy, type of delivery, gender, age, acceptance clinical diagnosis, hospital stay, pathogens and antibiotic susceptibility.

#### **RESULTS:**

Thirty three newborns were found to be positive with a 13.2% contamination rate in the presence of bacteria in the blood culture. Early and late-onset sepsis, pathogens was 81.2%, respectively, 47.2%, and 52.8 %, and 91% respectively. All septic patient's pathogenic organisms were isolated. The total number of isolated pathogenic microorganisms is twenty-one species, these include various types of isolated pathogens and include: (31.4%), Gram negative, (0.3%) Candida spp. and (68.3%) Gram positive. Table I.

| Organism                | Frequency | %  |
|-------------------------|-----------|----|
| Coag. Neg. staph.       | 18        | 57 |
| E. Coli                 | 4         | 11 |
| Klebsiell spp.          | 3         | 9  |
| Pseudomonas auroginosa  | 2         | 6  |
| S. aureus               | 1         | 3  |
| Streptococcus pneumonia | 1         | 3  |
| Klebsiella pneumonia    | 1         | 3  |
| Candida spp.            | 1         | 3  |
| Others                  | 2         | 5  |

Table 1: frequency of isolated pathogens from neonatal septicemia

Table II shows the Gram-negative pathogens antibiotic susceptibility and its pattern for, with a significant change in the responses of different isolates. The antibiotic was more sensitive to ceftriaxone, amikacin, ciprofloxacin, chloramphenicol, gentamicin, cefuroxime, cefutaxime, ceftazidime, ampicillin, pipracelline and meropenem.

Table 02: percentage of antibiotic sensitivity against gram-negative pathogens

| Antibiotics  | E. coli | Klebsiella spp. | Pseudomonas aeurg. (%) |
|--------------|---------|-----------------|------------------------|
|              | (%)     | (%)             |                        |
|              |         |                 |                        |
| Meropenem    | 83      | 73              | 59                     |
| Amikacine    | 79      | 71              | 79                     |
| Ceftriaxone  | 74      | 79              | 63                     |
| Ceftazidime  | 71      | 55              | 84                     |
| Pipracelline | 56      | 58              | 63                     |
| Cefuroxime   | 74      | 68              | 26                     |

Table III shows the pattern for Gram positive and its antibiotic susceptibility which varies significantly in response to different isolates.

| Antibiotics | Coag. Neg. | Saph. Aureus | Streptococcus | Streptococcus |
|-------------|------------|--------------|---------------|---------------|
|             | Staph (%)  | (%)          | viridans (%)  | pneumonia (%) |
| Vancomycin  | 80         | 80           | 79            | 83            |
| Cefuroxime  | 76         | 67           | 73            | 75            |
| Cafataxime  | 66         | 44           | 91            | 75            |
| Amikacine   | 78         | 89           | 37            | 50            |
| Gentamycin  | 65         | 78           | 36            | 25            |
| Ceftazidime | 47         | 22           | 82            | 75            |
| Ceftriaxone | 66         | 56           | 82            | 100           |

Table 3: percentage of antibiotic sensitivity against gram positive pathogens

#### **DISCUSSION:**

In our hospital, doctors offer one or two instances instead of the three that make it difficult to interpret blood cultures. The importance of coagulase-negative staphylococci in bacteremia production remains controversial. In the 1970s, coagulase-negative staphylococci considered were primarily contaminants; as the skin normal flora. Since then, various studies have reported a higher incidence of coagulase-negative staphylococcal infections. In our study, neonatal units containing 61%, Gram positive, 38%, gram negative bacilli and 0,3% fungus were reported in developing countries<sup>[11-12]</sup>. In this study, gram positive organisms from neonatal septicemic cases were isolated from 68.3% isolates. In this group, coagulase-negative staphylococci and S. aureus were the first and second most common etiologic agents in the United States leading to nosocomial infections in the bloodstream <sup>[13]</sup>. In another study, S. aureus and E. coli were the most frequently isolated infections of blood circulation, while Enterococci, Klebsiella spp. Pseudomonas aeruginosa, Enterobacter spp. streptococcal pneumonia and hemolytic streptococci were found in 10 of the 10 most reported species in the USA. U. And Canada. As in Canada <sup>[14-15]</sup>. The main pathogens causing sepsis were not antimicrobial resistance, ampicillin-resistant S. aureus and coagulase-negative. In 18% of Streptococcus infected

patients ampicillin resistance was noted and for Streptococcus aureus pneumonia 25% of cases have resistance. For Gram positive organisms Vancomycin was the most effective. Coagulase, S. aureus, 80%, Streptococcus virulence, 79% and 83% negative isolates showed that Streptococcus pneumonia was susceptible. The most effective drug for gram-negative bacteria was ceftriaxone, amikacin, ciprofloxacin and chloramphenicol followed by meropenem. For most organisms, penicillin and aminoglycosides were effective. We continue to use these agents in the first empirical treatment of septicemic newborns in our hospitals. WHO also recommended the ampicillin or penicillin use plus aminoglycosides for infants younger than two months.

#### **CONCLUSION:**

This study reveals the difference between two septicemias in hospitals (early and late-onset sepsis) with Klebsiella spp (9%), E. coli (11%), and negative staphylococcal prevalence (57%), and others (05%). For gram negative isolates meropenem was the most effective treatment, while vancomycin was the most effective against gram positive isolates.

#### **REFERENCES:**

- Li, Jing-yang, Shang-qin Chen, Yan-yan Yan, Ying-ying Hu, Jia Wei, Qiu-ping Wu, Zhen-lang Lin, and Jing Lin. "Identification and antimicrobial resistance of pathogens in neonatal septicemia in China—A metaanalysis." *International Journal of Infectious Diseases* 71 (2018): 89-93.
- Shidiki, Amrullah, Bijayraj Pandit, and Ashish Vyas. "Incidence and antibiotic profile of bacterial isolates from neonatal septicemia in national medical college and teaching hospital, Birgunj, Nepal." *Research Journal of Pharmacy and Technology* 11, no. 6 (2018): 2238-2242.
- Lakshmikantha, Mapari, and Gupta Bipin Kumar. "Bacteriological Profile of Neonatal Septicemia in a Tertiary Care Hospital, Western UP, India." *Int. J. Curr. Microbiol. App. Sci* 7, no. 3 (2018): 452-460.
- Singh, S., Agrawal, A., Mohan, U. and Awasthi, S., 2018. Prevalence of thrombocytopenia in neonates admitted in NICU with culture proven sepsis. *International Journal of Contemporary Pediatrics*, 5(3), pp.743-748.
- Subudhi, K. Trimal, Dillip Kumar Dash, Priyanka Agarwal, and Shatabdi Giri. "EPIDEMIOLOGY, ETIOLOGY AND RISK FACTORS FOR NEONATAL SEPSIS IN SOUTH-EAST ODISHA REGION--A HOSPITAL BASED

# STUDY." *INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH* 7, no. 6 (2018).

- Angadi, Deepti R., Latha Goravalingappa, and Sreedevi Hanumantha. "Descriptive Study to Find out Antibiotic Susceptibility Pattern of the Clinical Isolates of Neonatal Septicemia." *Int. J. Curr. Microbiol. App. Sci* 7, no. 1 (2018): 20342039.
- 7. Nazir, Asifa, and Talat Masoodi. "Spectrum of candidal species isolated from neonates admitted in an Intensive Care Unit of teaching hospital of Kashmir, North India." *Journal of laboratory physicians* 10, no. 3 (2018): 255.
- Shabnum, M., P. Sreenivasulu Reddy, and P. Vasundhara. "Common Isolates among Suspected Cases of Septicemia with a Special Emphasis on Multidrug Resistant Strains." *Int. J. Curr. Microbiol. App. Sci* 7, no. 3 (2018): 711721.
- Ninan, Sunil Abraham, and Babu Francis VJ. "A STUDY OF INCIDENCE AND DEMOGRAPHIC DISTRIBUTION OF NEONATAL SEPSIS IN NICU." *INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH* 7, no. 3 (2018).
- Lauteri E, Corsalini J, Pepe M, Mandara MT, Passamonti F, Beccati F. EHV-1 Congenital Infection and Concurrent Actinobacillus equuli Septicemia in a Standardbred Neonatal Foal: Clinical, Diagnostic Findings, and Evaluation of Adrenal Gland Function. Journal of Equine Veterinary Science. 2018 Feb 1;61:7-12.
- 11. Ravindra, Y. M., and Raju Hanumant Patil. "A STUDY OF INCIDENCE, DEMOGRAPHIC DISTRIBUTION AND THE COMMON PATHOGENS OF NEONATAL SEPSIS IN NICU." *PARIPEX-INDIAN JOURNAL OF RESEARCH* 7, no. 3 (2018).
- Tak, S. K., Anup Paliwal, and Sameer Jagrwal. "Bacteriological Profile and Antibiotic Sensitivity Pattern in Community Acquired Neonatal Sepsis in Rajsamand–A Hospital Based Prospective Study." *International Archives of BioMedical and Clinical Research* 4, no. 1 (2018): 78-80.
- 13. Grandolfo, Erika, Antonio Parisi, Antonia Ricci, Eleonora Lorusso, Rocco de Siena, Adriana Trotta, Domenico Buonavoglia, Vito Martella, and Marialaura Corrente. "High mortality in foals associated with Salmonella enterica subsp. enterica Abortusequi infection in Italy." *Journal* of Veterinary Diagnostic Investigation 30, no. 3 (2018): 483-485.
- 14. Vijayalakshmi A, Rajeswari J. BACTERIOLOGICAL PROFILE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF BLOOD CULTURE ISOLATES

FROM A TERTIARY CARE TEACHING HOSPITAL, SOUTH INDIA. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH. 2018 Apr 10;7(2).

15. Singh, Deepinder, Ashima Katyal, Madhu Sharma, and Uma Chaudhary. "Virulence profile

and antibiotic susceptibility pattern of bloodculture isolates of Klebsiella pneumoniae at tertiary care center, India." *WJPMR* 4 (2018): 119-123.