Rajeswar dutt et al

ISSN 2349-7750

Available online at: <u>http://www.iajps.com</u>

Research Article

A VALIDATED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF GLECAPREVIR AND PIBRENTASVIR IN PHARMACEUTICAL DOSAGE FORM

Dr. Rajeswar Dutt^{*1}, Potlapally Laxman rao¹, Santhosh Illendula ¹

¹Department of Pharmaceutical Analysis, Nalanda College of Pharmacy, Cherlapally(v),

Nalgonda(Dt), Telangana (St), India, 508001.

Article Received: May 2019	Accepted: June 2019	Published: July 2019
Abstract:		
A simple, Accurate, precise technique was	produced for the simultaneous e	estimation of the estimation of the
Glecaprevir & Pibrentasvir in Pharmaceut	ical dosage form. Chromatogram	n was run through Kromosil C18
250x4.6mm,5µ. MP containing Buffer 0.01N	KH2PO4: ACN taken in the ratio	55:45 was pumped through column
at a stream rate of 1ml/min. Buffer utilized in	n this technique was 0.1% Ortho p	phosphoric acid buffer. Temperature
was maintained at 30°C. Improved waveleng	th chose was 260 nm. Retention ti	me of Glecaprevir and Pibrentasvir
were observed to be 2.501 min and 3.113 min	. %RSD of the Glecaprevir and Pi	ibrentasvir were and found to be 0.2
and 0.6 correspondingly. %Recovery was	obtained as 99.48% and 99.57%	% for Glecaprevir & Pibrentasvir
correspondingly. LOD, LOQ values get from	regression equations of Glecapro	evir & Pibrentasvir were 0.71, 2.15
and 0.32, 0.96 respectively. Regression equ	ation of Glecaprevir is $y = 8171$	x + 4225., y = 8748.x + 1373 of
Pibrentasvir. Upkeep times were lessened an	d run time was reduced, so the p	rocedure made was direct and mild
that can be grasped in typical Quality control	test in Industries.	
Key Words: Glecaprevir, Pibrentasvir, RP-H	IPLC.	

Corresponding author:

Dr. Rajeswar dutt,

Department of Pharmaceutical Analysis, Nalanda College of Pharmacy. Cherlapally (v), Nalgonda(Dt), Telangana (St), India, 508001.

Please cite this article in press Rajeswar dutt et al., A Validated RP-HPLC Method for Simultaneous Estimation of Glecaprevir and Pibrentasvir in Pharmaceutical Dosage Form., Indo Am. J. P. Sci, 2019; 06(07). Rajeswar dutt et al

INTRODUCTION:

Glecaprevir is a direct acting antiviral agent and Hepatitis C virus (HCV) NS3/4A protease inhibitor that targets the the viral RNA replication. In combination with Pibrentasvir, glecaprevir is a useful therapy for patients who experienced therapeutic failure from other NS3/4A protease inhibitors.

Structure:

3,5(10),6,8,11,14-hexaene-29-carboxamide.

Pibrentasvir is an immediate acting antiviral specialist and Hepatitis C infection (HCV) NS5A inhibitor that objectives the viral RNA replication and viron get together. In mix with Glecaprevir, pibrentastiv is a valuable treatment for patients who experienced remedial disappointment from other NS5A inhibitors.

IUPAC Name: (2S,3R)-1-[(2S)-2-{5-[(2R,5R)-1-{3,5-difluoro-4-[4-(4-fluorophenyl)piperidin-1yl]phenyl}-5-{6-fluoro-2-[(2S)-1-[(2S,3R)-2-{[hydroxy(methoxy)methylidene]amino}-3methoxybutanoyl]pyrrolidin-2-yl]-1H-1,3benzodiazol-5-yl}pyrrolidin-2-yl]-6-fluoro-1H-1,3benzodiazol-2-yl}pyrrolidin-1-yl]-2-{[hydroxy(methoxy)methylidene]amino}-3methoxybutan-1-one

Structure:

As per the literature review, Glecaprevir and Pibrentasvir was estimated individually by few methods like simple HPLC1, Ultra HPLC2, HPLC-MS. The objective of the work is to develop RP-HPLC method for estimation of Glecaprevir and Pibrentasvir in tablet dosage form with simple, rapid, accurate and economical methods and validated for system suitability, linearity, accuracy, precision, robustness and stability of sample solution as per ICH guidelines.^[1]. The objective of the work is to develop RP-HPLC method for estimation of Glecaprevir and Pibrentasvir in tablet dosage form with simple, rapid, accurate and economical methods and validated for system suitability, linearity, accuracy, precision, robustness and stability of sample solution as per ICH guidelines.

MATERIALS AND METHODS:

HPLC Instrumentation & Conditions:

The HPLC system employed was HPLC with Empower2 Software with Isocratic with UV-Visible Detector.

Standard & sample preparation for UV-spectrophotometer analysis:

Standard Preparation:

Exactly weighed & transferred 25mg of Glecaprevir and 10mg of Pibrentasvir working Standards into a 25ml clean dry volumetric cup, include 3/fourth volume of diluent, sonicated for 5 minutes and make up to the last volume with diluents. 1ml from the above stock plan was taken into a 10ml VF and wound up to 10ml

Sample Preparation:

5 Tablets was weighed ,powdered and then was moved into a 100mL volumetric glass, 50mL of

diluent included and sonicated for 25 min, further the volume made up with diluent and sifted. From the sifted arrangement 1 ml was pipeted out into a 10 ml volumetric glass and made upto 10ml with diluent.

Overlay UV spectra of Glecaprevir & Pibrentasvir:

 λ_{max} of Glecaprevir & Pibrentasvir was 280.3nm and 260.2nm correspondingly.Overlay spectra gave the enhanced wavelength for these 2 drugs.

Enhanced wavelength choose was 260nm.

Ontimized Chromatographic Conditions

Optimized Chi omatog	si apine	Conditions.
Mobile phase		: 55% KH2PO4 (0.01N): 45% Acetonitrile
Stream rate		: 1 ml/min
Column	:	Kromosil C18 (4.6 x 150mm, 5µm)
Detector wavelength	:	260.0 nm
Column temperature	:	30°C
Injection volume	:	10µL
Run time		: 6 min
Diluent		: Water & ACN in the ratio 50:50
Results	:	Two peaks have good resolution, tailing Factor, theoretical plate count and
resolution.		

MOBILE PHASE PREPARATION:

Mobile phase was prepared by taking KH2PO4 and Acetonitrile. Mobile phase was filtered through 0.45 m membrane filter and degassed under ultrasonic bath prior to use. The mobile phase was pumped through the column at a flow rate of 1.0 ml/min.

SAMPLE & STANDARD PREPARATION FOR THEANALYSIS:

Exactly weighed & transferred 25mg of Glecaprevir and 10mg of Pibrentasvir working Standards into a 25ml clean dry volumetric cup, include 3/fourth volume of diluent, sonicated for 5 minutes and make up to the last volume with diluents. 1ml from the above stock plan was taken into a 10ml VF and wound up to 10ml.

Table-1: Trials for method development						
Column Used	Mobile Phase	Flow Poto	Wave	Observation	Result	
		Kate	length	D 1 1 1		
Altima C18 (4.6 x	Water and Methanol taken	1	260nm	Peak was not eluted	Method	
150mm, 5µm)	in the ratio 50:50	ml/min			rejected	
Altima C18 (4.6 x	0.1% OPA: Methanol	1.0	260nm	Tailing Peaks	Method	
150mm, 5µm)	(50:50)	ml/min		-	rejected	
Altima C18 (4.6 x	50% OPA(0.1%): 50%	1.0	260nm	Peaks and plate count	Method	
150mm, 5µm)	Acetonitrile	ml/ min		was not good	rejected	
Kromosil C18 (4.6 x	50% 0.1% OPA:50%	1.0	260nm	Base line is not good	Method	
150mm, 5µm)	Acetonitrile	ml/ min			rejected	
Kromosil C18 (4.6 x	55% 0.1% OPA: 45%	1.0	260nm	Base line is not good	Method	
150mm, 5µm)	Acetonitrile	ml/ min			rejected	
Kromosil C18 (4.6 x	55% KH2PO4 (0.01N):	1.0	260nm	Good Peak	Method	
150mm, 5µm)	45% Acetonitrile	ml/ min			Accepted	

RESULT AND DISCUSSION:

Trial chromatogram 2

Optimized Chromatom

METHOD VALIDATION:

Accuracy: Recovery study: To determine the accuracy of the projected technique, recovery studies

were distributed by adding totally different amounts (50%, 100%, and 150%) of pure drug of Glecaprevir and Pibrentasvi and the values were calculated.

_	Accuracy Readings					
% Level	Amount Spiked (µg/mL)	Amount recovered (μg/mL)	% Recovery	Mean %Recovery		
	50	50.32248	100.64			
50%	50	50.13193	100.26			
	50	49.93183	99.86			
	100	98.81312	98.81			
100%	100	99.05103	99.05	99.48%		
	100	99.91813	99.92			
	150	147.5893	98.39			
150%	150	148.7543	99.17			
	150	148.8524	99.23			

Precision:

Repeatability-

The precision of each method was ascertained separately from the peak areas & retention times obtained by actual determination of six replicates of a fixed amount of drug.

Repeatability Results of Precision

S. No	Area of Glecaprevir	Area of Pibrentasvir		
1.	819660	357522		
2.	802447	358068		
3.	817777	353334		
4.	818341	358544		
5. 810782		353754		
6. 816781		352707		
Mean 814298		355655		
S.D	6575.3	2658.8		
%RSD	0.8	0.7		

Linearity and Range

Glecaprevir		Pibrentasvir		
Conc (µg/mL) Peak area		Conc (µg/mL)	Peak area	
0	0	0	0	
25	215815	10	92506	
50	416445	20	173434	
75	615508	30	262916	
100	816257	40	353824	
125	1014870	50	438046	
150	1240701	60	526010	

Calibration curve of Glecaprevir

Calibration curve of Pibrentasvir

LOD & LOQ: The Minimum concentration level at which the analyte can be reliable detected (LOD) & quantified (LOQ) for Glecaprevir were found to be 0.71 and 2.15 and pibrentasvir were found to be 0.32 and 0.96 μ g/ml respectively.

System Suitability Parameter

System quality testing is Associate in nursing integral a part of several analytical procedures. The tests area unit supported the construct that the instrumentation, physics, Associate in Nursingalytical operations and samples to be analyzed represent an integral system that may be evaluated intrinsically^[14]. Following system quality take a look at parameters were established.

S no	Glecaprevir			Pibrentasvir			
Inj	RT(min)	USP Plate Count	Tailing	RT(min)	USP Plate Count	Tailing	USP Resolution
1	2.497	7701	1.31	3.105	8059	1.34	4.7
2	2.499	7943	1.29	3.109	8087	1.31	4.7
3	2.499	8095	1.30	3.113	8154	1.29	4.7
4	2.501	8207	1.30	3.114	7772	1.29	4.7
5	2.502	8143	1.30	3.115	7856	1.29	4.6
6	2.503	8083	1.35	3.117	7393	1.29	4.6

Dataof System Suitability Parameter

FORCED DEGRADATION STUDIES:

Acid Degradation:

To 1.0ml of stock s arrangement Glecaprevir and Pibrentasvir, 1.0ml of 2N HCL was included and

keeping for 30.0 mins at 60° C. The resultant game plan was debilitated to get 100μ g/ml& 40μ g/ml game plan and 10.0 μ l courses of action were injected into the Hplc.

Acid chromatogram of Glecaprevir & Pibrentasvir

2. Basic Degradation: To 1.0ml of stock arrangement Glecaprevir and Pibrentasvir, 1.0ml of 2N NaOH was included and refluxed for 30.0minutes at 600C. The resultant

course of action was debilitated to secure 100µg/ml&40µg/ml game plan and 10.0µl were injected into the HPLC.

3. Thermal Degradation: The standard medication arrangement was set in broiler at 105°C for 6.0 hours to consider dry warm corruption. For HPLC think about, the resultant plan was debilitated to

 $100\mu g/ml\&40\mu g/ml$ game plan and $10.0\mu l$ were mixed into the system and the chromatograms were recorded to assess the reliability of the example

4. Photo Stability studies:

The photochemical dependability of the medication was likewise contemplated by uncovering the 1000µg/ml& &400µg/ml answer for UV Light by keeping the measuring utencil

in UV Chamber for 1days or 200 Watt hours/m2 in photograph steadiness chamber. For HPLC mull over, the resultant plan was debilitated to gain 100 μ g/ml 40 μ g/ml courses of action and 10.0 μ l were injected into the system.

5. Oxidation

To 1.0ml of stock solution of Glecaprevir & Pibrentasvir, 1 ml of 20% H2O2 was included independently and kept for 30.0min at 60° c. For

HPLC think about, the resultant course of action was debilitated to get $100\mu g/ml\&40\mu g/ml$ game plan and $10\mu l$ were imbued into the system.

Peroxide chromatogram of Glecaprevir & Pibrentasvir

S.NO	Degradation	% Drug	Purity Angle	Purity Threshold		
	Condition	Degraded				
1	Acid					
		4.38	1.565	2.215		
2	Alkali					
		4.17	1.373	1.627		
3	Oxidation					
		3.74	1.221	1.465		
4	Thermal					
		2.92	1.619	2.361		
5	UV					
		1.01	1.176	1.433		
6	Water					
		1.01	1.143	1.404		

Degradation Data of Glecaprevir

Degradation Data of Pibrentasvir

S.NO	Degradation Condition	% Drug Degraded	Purity Angle	Purity Threshold
1	Acid	4.38	2.902	4.043
2	Alkali	3.84	2.310	2.587
3	Oxidation	3.51	3.191	2.694
4	Thermal	2.25	3.400	4.561
5	UV	1.11	2.333	2.657
6	Water	0.76	3.139	2.517

CONCLUSION:

A simple, Accurate, precise, sensitive & selective RP-HPLC method has been developed & validated for the simultaneous estimation of the Glecaprevir & Pibrentasvir in Pharmaceutical dosage form. The result shows the developed method is yet another suitable method for assay, purity & stability which can help in the analysis of Glecaprevir & Pibrentasvir in different formulations.

REFERENCES:

- 1. Li-minWEI, Zhen-Xing Xu, Peng-feiLV, Yongle XUE, Xing-Xiang WANG and min ZHANG,A simple HPLC method for the determination of Ibrutinib in rabbit plasma and its application to a pharmacokinetic study. Latin American journal of pharmacy, 2016; 5(1): 130-34.
- Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KC, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (Jan 2007).
 "Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase". ChemMedChem 2(1): 58–61.
- Jump up^A US patent 7514444, Honigberg L, Verner E, Pan Z, "Inhibitors of Bruton's Tyrosine Kinase", pharmacyclics Inc 7 April 2009, issued 28 December 2006.
- 4. Morgan, David J. "Fraction collector (post on Flickr)". Flickr. Retrieved 28 October 2015.
- 5. Karger, Barry L. (1997). "HPLC: Early and Recent Perspectives". Journal of Chemical Education. 74:

45. Bibcode:1997JChEd..74...45K.

6. Henry, Richard A. (1 February 2009) "The Early Days of HPLC at Dupont". Chromatography Online. Avanstar Communications Inc.

- 7. Iler, R.K. (1979) The Chemistry of Silica. John Wiley & Sons. New York.
- Karger, B. L.; Berry, L. V. (1971). "Rapid liquidchromatographic separation of steroids on columns heavily loaded with stationary phase". Clin. Chem. 17 (8): 757–64.
- Giddings, J. Calvin (1965) Dynamics of Chromatography, Part I. Principles and Theory. Marcel Dekker, Inc., New York. p. 281.
- Ettre, C. (2001). "Milestones in Chromatography: The Birth of Partition Chromatography" (PDF). LCGC. 19 (5): 506– 512. Retrieved 2016-02-26.
- Martin, A J P; Synge, R L M (1941). "Separation of the higher monoamino-acids by countercurrent liquid-liquid extraction: the amino-acid composition of wool". Biochemical Journal. 35 (1–2): 91–121.
- Lindsay, S.; Kealey, D. (1987). High performance liquid chromatography. Wiley. from review Hung, L. B.; Parcher, J. F.; Shores, J. C.; Ward, E. H. (1988). "Theoretical and experimental foundation for surface-coverage programming in gas–solid chromatography with an adsorbable carrier gas". J. Am. Chem. Soc. 110(11): 1090–1096.
- Displacement Chromatography. Sacheminc.com. Retrieved 2011-06-07. Archived September 15, 2008, at the Wayback Machine.
- Snyder, Lloyd R.; Dolan, John W. (2006). High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model. Wiley Interscience. ISBN 0470055510.
- Majors, Ronald E. (2010-09-07) Fast and Ultrafast HPLC on sub-2 μm Porous Particles — Where Do We Go From Here? – LC-GC Europe. Lcgceurope.com. Retrieved 2011-06-07.