Diksha Pingaleet al



CODEN [USA]: IAJPBB

ISSN: 2349-7750

## INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.2605501

Available online at: http://www.iajps.com

**Review Article** 

## **ROLE OF EXCIPIENT IN NANO-SUSPENSION**

**Rajveer Bhaskar<sup>1</sup>, Monika Ola<sup>2</sup>, Diksha Pingale<sup>1\*</sup>, Rahul Patil<sup>1</sup>, Shailesh Chalikwar<sup>1</sup>** <sup>1</sup> Department of Pharmaceutical Quality Assurance, RCPIPERShirpur (Dist-Dhule), India, Email – dikshapingale2595@gmail.com, Mobile no – 9403762168, <sup>1</sup>Department of Pharmaceutical

Quality Assurance, RCPIPERShirpur (Dist-Dhule), India, Email -

patilrk00747@gmail.com<sub>1</sub>Mobile no – 9158952475, <sup>1</sup>Department of Pharmaceutical Quality Assurance,RCPIPERShirpur ( Dist-Dhule ), India,Email – bhaskar007raj@gmail.com,Mobile no – 8275102109, <sup>2</sup>Department of Pharmaceutics,RCPIPERShirpur ( Dist-Dhule ), India,Email – monika.ola@rediffmail.com,Mobile no – 8275102108

| Article Received: January 2019 | Accepted: February 2019 | Published: March 2019 |
|--------------------------------|-------------------------|-----------------------|
| Abstract:                      |                         |                       |

Excipients play an important role in formulate a dosage form. These are the ingredients which along with Active Pharmaceutical ingredients build up the dosage forms. Excipients act as suspending agents, stabilizing agents and can also be used to improve bioavailability of drugs in some instances, the following review discuss the different types and sources of excipients along with their uses, role and these can be used for different activities. Specific excipients are best suitable for a exacting dosage form; the selection criterion for excipients and various interactions that an excipient can suffer through its course of stay in formulation has been discuss in this review. Some excipient interactions can be harmful and need to be avoid. This has been complete out in the interaction section. Excipients as like other active pharmaceutical ingredients need to be stabilized and homogeneous.

Keywords: Excipients, Role, Suspending Agents, Excipient interaction, Bioavailability, function.

## **Corresponding author:**

## Miss. Diksha Pingale

Department of Pharmaceutical Quality Assurance RCPIPER Shirpur (Dist-Dhule), India Email – <u>dikshapingale2595@gmail.com</u> Mobile no – 9403762168



Please cite this article in press Diksha Pingaleet al., Role Of Excipient In Nano-Suspension., Indo Am. J. P. Sci, 2019; 06(03).

## **INTRODUCTION**

Excipients play significant part in Nano-suspension. A excipient is a material prepare along the effective component of a medicament included for the design of a continuing the stabilization, round up solid formulations so as to include potent active component in minute quantity or to compare therapeutically increasing on the active component in the absolute dosage form, such as simplify drug absorption, decreasing viscosity, or increasing solubility. Excipients also advantageous in the manufacturing process to help in the management of active component affected such as by simplify powder flowability or non-stick properties. In that to assist in invitro stability such as obstruction of denaturation or accumulation ended the expected shelf-life. The alternative of suitable excipients also depending upon their routes of administration, dosage form, active component and other elements.[1]

Many dosage form formulated today are composite method contain many additional components alongside with the active pharmaceutical ingredient (API); these compounds are usually added along with the active pharmaceutical ingredients in order to:-[2] (I)Protect, support or increase stability of the formulation. (II)Bulk up the formulation in case of potent drug for supporting in formulation of an precise dosage form. (III)Improve patient acceptance. (IV)Help to develop bioavailability of active drug. (V)Increase in general safety and effectiveness of the formulation during its storage and use.[3]

Purposes Assisted Through Excipients:-

1. They afford mass to the formulation.

2.To accelerate drug absorption or solubility & other pharmacokinetic deliberations.

3.Help in handling of "API" while manufacturing.

4. They afford stability and nullify from denaturation. [4]

Requirements of Excipient:-

- 1. They are pharmacologically inert.
- 2. They are stable for handling.

3. Excipients are cost effective.

4. No contact with the drug and other components.

5. Feasible. [5]

### **ORIGIN AND SOURCES OF EXCIPIENTS**

Excipients are derived from various sources:-

Mineral sources e.g. Talc, Calcium silicate, Silica, etc.[6]

Animal sources e.g. Shellac, gelatin, Magnesium stearate, Lactose etc.

Vegetable sources e.g. Starches, Cellulose, sugar, alginates, etc[7]

Semi synthetic origin e.g. Cellulose derivative like Hydroxypropylmethylcellulose (HPMC), etc

Synthetic origin e.g. polyvinylpyrrolidone, polyethylene glycol, Cross povidone etc. [8]

## **SELECTION OF EXCIPIENTS**

Formulation of nanosuspension requires a careful selection of stabilizers. Stabilizers are needed to stabilize the nanoparticles against inter-particle forces and prevent them from aggregating. At the nanometer domain, attractive forces between particles, due to dispersion or van der Waals forces, come into play. This attractive force increases dramatically as the particles approach each other, ultimately resulting in an irreversible aggregation. To overcome the attractive interaction, repulsive forces are needed to cost of materials, morphology at room temperature, digestibility of the excipients shown in fig;-1. There are two modes of imparting repulsive forces or energetic barriers to a colloidal system steric stabilization and electrostatic stabilization. Steric stabilization is achieved by adsorbing polymers on to the particle surface. As the particles approach each other, the osmotic stress created by the encroaching steric layers acts to keep the particles separate. Electrostatic stabilization is obtained by adsorbing charged molecules, which can be ionic surfactants or charged polymers, on to the particle surface. Charge repulsion provides an electrostatic potential barrier to particle aggregation.



Fig Selection of Excipients

### **EXCIPIENT INTERACTION**

### **Physical Interactions:-**

Physical interactions alter the rate of dissolution, dosage uniformity, etc. physical interactions do not involve chemical changes thus permitting the components in the formulation to retain their molecular structure. Physical interactions are difficult to detect. Physical interactions can be either beneficial or detrimental to the product performance which is dependent on its application.[9]

### **Chemical Interactions:-**

Active pharmaceutical ingredients and excipients react with each other to form unstable compounds. Several chemical drugs-excipient interactions have been reported in literature. Generally chemical interactions have a deleterious effect on the formulation hence such kind of interactions must be usually avoided.[10]

### **Bio-pharmaceutical Interactions:-**

These are the interactions which are observed after administration of the medication. Interaction within the body is between medicine and body fluids which influence the rate of absorption. All excipients interacts in physiological way when they are administered along with active pharmaceutical ingredients.[11]

## Excipient-Excipient Interactions:-

Excipient-Excipient interactions though observed very rarely, these are of prime importance in determining the stability of the dosage forms. Excipient-Excipient interactions can be undesirable as well as some interactions are used in the formulations to get the desired product attributes. [12]

## **EXCIPIENT USED IN NANO-SUSPENSION [13]**

| Sr no. | Excipient category                     | Function in             | Working principle           | Example               |
|--------|----------------------------------------|-------------------------|-----------------------------|-----------------------|
|        |                                        | formulation             |                             |                       |
| 1      | <u>Solvents</u> -                      | Dissolving              | Breaking of bonds and       | Water, alcohol,       |
|        | A solvent is a substance that          | solute/Active           | reducing effective charge   | acetic acid, acetone, |
|        | dissolves a solute, resulting in a     | pharmaceutical          | on ions thus increasing     | ethyl acetates,       |
|        | solution. Common uses for organic      | ingredient.             | Solute-Solvent forces of    | syrups, etc.          |
|        | solvents are in dry cleaning, as paint |                         | attraction which are        |                       |
|        | thinners, as nail polish removers and  |                         | eventually greater than     |                       |
|        | glue solvents, in spot removers, in    |                         | Solute-Solute and Solvent-  |                       |
|        | detergents and in perfumes.            |                         | Solvent forces of           |                       |
|        |                                        |                         | attraction.                 |                       |
| 2      | <u>Co-solvents</u> -                   | Increase the solubility | Co-solvent system works     | Ethanol, Sorbitol,    |
|        | Co-solvents improve solubility         | of solute in solvents.  | by reducing the interfacial | Glycerin, Propylene   |
|        | between non-miscible phases, as        |                         | tension between             | glycol etc.           |
|        | demonstrated by a solute dissolved in  |                         | predominantly aqueous       |                       |
|        | organic solvent but insoluble in water |                         | solutions and hydrophobic   |                       |
|        | (left). A co-solvent miscible in both  |                         | solutes                     |                       |
|        | phases and able to dissolve the solute |                         |                             |                       |
|        | is added to form a homogeneous         |                         |                             |                       |
|        | solution of water, organic solvent,    |                         |                             |                       |
|        | and compound.                          |                         |                             |                       |
| 3      | Buffers-                               | Maintain pH of the      | Act by binding hydrogen     | Phosphate buffers,    |
|        | A buffer solution is an aqueous        | formulation.            | ions in acids and donating  | Acetate buffers,      |
|        | solution consisting of a mixture of a  |                         | hydrogen ions in bases.     | Citric acid Phosphate |
|        | weak acid and its conjugate base, or   |                         |                             | buffers etc.          |
|        | vice versa. Its pH changes very little |                         |                             |                       |
|        | when a small amount of strong acid     |                         |                             |                       |
|        | or base is added to it. Buffer         |                         |                             |                       |
|        | solutions are used as a means of       |                         |                             |                       |
|        | keeping pH at a nearly constant value  |                         |                             |                       |
|        | in a wide variety of chemical          |                         |                             |                       |
|        | applications. In nature, there are     |                         |                             |                       |
|        | many systems that use buffering for    |                         |                             |                       |
|        | pH regulation.                         |                         |                             |                       |
| 4      | Antimicrobial preservatives-           | Prevent microbial       | Bacteriostatic action.      | Butyl paraben,        |
|        | A preservative is a substance or a     | growth in               |                             | Benzyl alcohol.       |
|        | chemical that is added to products     | formulations.           |                             |                       |
|        | such as food, beverages,               |                         |                             |                       |
|        | pharmaceutical drugs, paints,          |                         |                             |                       |
|        | biological samples, cosmetics, wood,   |                         |                             |                       |
|        | and many other products to prevent     |                         |                             |                       |
|        | decomposition by microbial growth      |                         |                             |                       |
|        | or by undesirable chemical changes.    |                         |                             | A 1' '1               |
| 5      | Anti-oxidents-                         | Control oxidation.      | Act by getting              | Ascorbic acid,        |
|        | Antioxidants are compounds that        |                         | preferentially oxidized or  | Sodium bisulphate,    |
|        | inhibit oxidation. Oxidation is        |                         | by blocking an oxidative    | Thiourea, Butyl       |
|        | a chemical reaction that can           |                         | chain reaction.             | Hydroxy Toluene       |
|        | produce free radicals, thereby leading |                         |                             | (BH1), Tocopherols.   |
|        | to chain reactions that may damage     |                         |                             | Etc.                  |
|        | the cells of organisms.                |                         |                             |                       |

| 6  | Wetting agents -                              | Aid wetting and         | Act by reducing interfacial  | Sodium Laurvl                                                                                                   |
|----|-----------------------------------------------|-------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|
| -  | A substance is referred to as a               | dispersion of           | tension between solids and   | Sulphate (SLS).                                                                                                 |
|    | wetting agent if it <b>lowers the surface</b> | hydrophobic active      | liquids in suspensions.      | Tween 80. Spans.                                                                                                |
|    | <b>tension of a liquid</b> and thus allows it | pharmaceutical          |                              | Lecithins etc.                                                                                                  |
|    | to spread more easily.                        | ingredients.            |                              |                                                                                                                 |
| 7  | Anti-foaming agents-                          | Discourage formation    | Lowers surface tension and   | Simethicone.                                                                                                    |
| ,  | A defoamer or an <b>anti-foaming</b>          | of stable foam          | cohesive binding of liquid   | Organic phosphates                                                                                              |
|    | agent is a chemical additive that             | of studie found.        | phase.                       | Alcohols, Paraffin                                                                                              |
|    | reduces and hinders the formation of          |                         | priaser                      | oils. Sterates and                                                                                              |
|    | foam in industrial process liquids.           |                         |                              | glycols.                                                                                                        |
|    | The terms <b>anti-foaming agent</b> and       |                         |                              | 51,00101                                                                                                        |
|    | defoamer are often used                       |                         |                              |                                                                                                                 |
|    | interchangeably.                              |                         |                              |                                                                                                                 |
| 8  | Thickening agents-                            | Prevent                 | Work by entrapment of        | Hydroxyethyl                                                                                                    |
| Ŭ  | A thickening agent or thickener is a          | settling/sedimentation. | solid particles. Methyl      | cellulose.                                                                                                      |
|    | substance which can increase the              | modify viscosity.       | cellulose.                   | e e la constance e la |
|    | viscosity of a liquid without                 | moully viscosity.       |                              |                                                                                                                 |
|    | substantially changing its other              |                         |                              |                                                                                                                 |
|    | properties. Thickeners may also               |                         |                              |                                                                                                                 |
|    | improve the suspension of other               |                         |                              |                                                                                                                 |
|    | ingredients or emulsions which                |                         |                              |                                                                                                                 |
|    | increases the stability of the product.       |                         |                              |                                                                                                                 |
| 9  | Humectants -                                  | Retard evaporation of   | They are hygroscopic in      | Propylene glycols.                                                                                              |
| -  | A humectant is a hygroscopic                  | aqueous vehicles from   | nature which helps in        | Glycerol,                                                                                                       |
|    | substance used to keep things moist;          | dosage forms.           | prevent evaporation of       | Polyethylene glycol                                                                                             |
|    | it is the opposite of a desiccant             | U                       | solvent.                     | etc.                                                                                                            |
|    | because it is wet. In pharmaceuticals         |                         |                              |                                                                                                                 |
|    | and cosmetics, humectants can be              |                         |                              |                                                                                                                 |
|    | used in topical dosage forms to               |                         |                              |                                                                                                                 |
|    | increase the solubility of a chemical         |                         |                              |                                                                                                                 |
|    | compound's active ingredients.                |                         |                              |                                                                                                                 |
| 10 | Chelating agents-                             | Protect drug from       | Chelating agents form        | Disodium EDTA,                                                                                                  |
|    | Many essential biological chemicals           | catalysts that          | complexes with metal ions    | Dihydroxy ethyl                                                                                                 |
|    | are chelates. Chelates play important         | accelerate the          | inactivating their catalytic | glycine, Citric acid                                                                                            |
|    | roles in oxygen transport and in              | oxidative reaction.     | activity in oxidation of     | and Tartaric acid.                                                                                              |
|    | photosynthesis.                               |                         | medicaments.                 |                                                                                                                 |
|    | Furthermore, many biological                  |                         |                              |                                                                                                                 |
|    | catalysts (enzymes) are chelates. In          |                         |                              |                                                                                                                 |
|    | addition to their significance in living      |                         |                              |                                                                                                                 |
|    | organisms, chelates are also                  |                         |                              |                                                                                                                 |
|    | economically important, both as               |                         |                              |                                                                                                                 |
|    | products in themselves and as agents          |                         |                              |                                                                                                                 |
|    | in the production of other chemicals.         |                         |                              |                                                                                                                 |
| 11 | Emulsifying agents-                           | Prevent coalescence of  | Forms barriers at interface, | Sodium Lauryl                                                                                                   |
|    | Emulsifying agents Substances that            | the dispersed globules. | and reduces interfacial      | Sulphate, Cetrimide,                                                                                            |
|    | are soluble in both fat and water and         |                         | tension.                     | Macrogol esters,                                                                                                |
|    | enable fat to be uniformly dispersed          |                         |                              | Sorbitan esters etc                                                                                             |
| 10 | in water as an emulsion.                      | <b>D</b>                |                              | a. 1 a.u.                                                                                                       |
| 12 | <u>Flocculating agent</u> -                   | Prevent caking          | Addition of an electrolyte   | Starch, Sodium                                                                                                  |
|    | Clarifying agents are used to remove          |                         | reduces the magnitude of     | aiginate,                                                                                                       |
|    | suspended solids from liquids by              |                         | zeta potential of dispersed  | Carbomer.etc.                                                                                                   |
|    | having nocculation (the solids                |                         | particles.                   |                                                                                                                 |
|    | which aither precipitate to the better        |                         |                              |                                                                                                                 |
|    | or float to the surface of the light          |                         |                              |                                                                                                                 |
|    | or moat to the surface of the liquid,         |                         |                              |                                                                                                                 |

|    | and then they can be removed or collected).                                                                                                                                                                                                                                                                                                                                 |                   |                                                                                                          |                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 13 | Substances that sweeten food,<br>beverages, medications, etc. such as<br>sugar, saccharine or other low-calorie<br>synthetic products.                                                                                                                                                                                                                                      | Impart sweetness. | Substance that sweeten<br>food,beverages,medication<br>s.                                                | Sucrose, Sorbitol,<br>Saccharin,<br>Aspartame,<br>Sucralase. |
| 14 | <u>Coloring agent</u> -<br>A color additive is any dye, pigment<br>or substance which when added to a<br>food, drug or cosmetic, or to the<br>human body will impart a color.                                                                                                                                                                                               | Impart color.     | It is additive is in any dye,<br>pigment, or substance<br>which when added to food<br>drug or cosmetics. | Amaranth,<br>Erythrosine, Eosin,<br>Tartarazine etc.         |
| 15 | <u>Flavoring agent</u> -<br>Flavoring agents are key food<br>additives with hundreds of varieties<br>like fruit, nut, seafood, spice blends,<br>vegetables and wine which are<br>natural flavouring agents. Flavors are<br>used as additives to enhance, modify<br>the taste and the aroma in natural<br>food products which could have got<br>lost due to food processing. | Impart flavor.    | A flavor is a quality of something that affects the sense of taste.                                      | Aromatic waters,<br>Syrup etc                                |

## **EXCIPIENT PROFILE [14]**

| Excipient<br>Name   | Poloxamer<br>188, 407<br>[15]                                       | Tween 80               | Lecithin<br>[16]                     | Sodium<br>lauryl<br>sulfate                                | Docusate<br>sodium                                                            | Poly<br>ethylene<br>glycol 200<br>[17] | Polyvinyl<br>alcohol [18]                                                |
|---------------------|---------------------------------------------------------------------|------------------------|--------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|
| Synonym             | Pluronic f-<br>68                                                   | Polysorbates           | Egg lecithin                         | Sodium salt                                                | dioctyl<br>sodium<br>sulfosuccina<br>te                                       | Carbowax                               | Airvol,<br>Gelvol                                                        |
| Molecular<br>Weight | 7680-9510,<br>9840-<br>14600dalton<br>s                             | 1,310 daltons          | -                                    | 288.38<br>g/mol                                            | 444.56<br>g/mol                                                               | 380-420<br>g/mol                       | 20.000-<br>200000                                                        |
| Category            | Emulsifying agent                                                   | Suspending<br>agent    | Emolient                             | Anionic<br>surfactant                                      | Anionic<br>surfactant                                                         | Ointment<br>base                       | Lubricant                                                                |
| Description         | White<br>granules                                                   | Yellow oily<br>liquid  | Viscous<br>semi liquids<br>to powder | White or<br>cream to<br>pale yellow<br>crystals,<br>flakes | white or<br>almost<br>white, wax<br>like, bitter<br>tasting,<br>plastic solid | White<br>flakes                        | White<br>colored<br>granular<br>powder                                   |
| M.P                 | 52–57°C for<br>poloxamer<br>188;<br>52–57°C for<br>poloxamer<br>407 | 236-237 <sup>0</sup> C | 1 <del>6</del> 0-180 <sup>0</sup> C  | 204-207ºC                                                  | 153–157°C                                                                     | 37-40°C<br>(1000)<br>44-48°C<br>(1500) | 228°C fully<br>hydrolyzed<br>grades,<br>180-190°C<br>partially<br>grades |

www.iajps.com

| Density                    | 1.06g/cm3<br>at 25 <sup>0</sup> C                                                                                   | 1.0305 at 24ºC                                                                                                                              | 0.97g/cm3<br>for liquid<br>lecithin; 0.5<br>g/cm3 for<br>powdered<br>lecithin.                                                                                                                                                     | 1.07g/cm3<br>at 20ºC                                                                                                              | 1.16g/cm3                                  | 1.11–<br>1.14g/cm3<br>at 25 <sup>o</sup> C for<br>liquid<br>PEGs;<br>1.15–<br>1.21g/cm3<br>at 25 <sup>o</sup> C for<br>solid PEGs.                           | -                                                                                                          |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Moisture<br>Content        | less than<br>0.5% w/w<br>water and<br>are<br>hygroscopic<br>only at<br>relative<br>humidity<br>greater than<br>80%. | _                                                                                                                                           | _                                                                                                                                                                                                                                  | 45%;<br>sodium<br>lauryl<br>sulfate is<br>not<br>hygroscopi<br>c.                                                                 | 1.51%                                      | Liquid<br>polyethylen<br>e glycols<br>are very<br>hygroscopi<br>c, although<br>hygroscopi<br>city<br>decreases<br>with<br>increasing<br>molecular<br>weight. | -                                                                                                          |
| Refractive<br>Index        | _                                                                                                                   | _                                                                                                                                           | _                                                                                                                                                                                                                                  | _                                                                                                                                 |                                            | nD 25 =<br>1.459 for<br>PEG 200;                                                                                                                             | : nD 25 =<br>1.49–1.53                                                                                     |
| Solubility                 | Freely<br>soluble<br>ethanol and<br>water                                                                           | miscible with<br>alcohol,<br>cottonseed oil,<br>corn oil, ethyl<br>acetate,<br>methanol, and<br>toluene, but<br>insoluble in<br>mineral oil | soluble in<br>aliphatic and<br>aromatic<br>hydrocarbon<br>s,<br>halogenated<br>hydrocarbon<br>s, mineral<br>oil, and fatty<br>acids,<br>insoluble in<br>cold vegeta<br>ble and<br>animal oils,<br>polar<br>solvents,<br>and water. | Freely<br>soluble in<br>water,<br>giving an<br>opalescent<br>solution;<br>practically<br>insoluble in<br>chloroform<br>and ether. | Soluble in<br>acetone and<br>vegetable oil | All grades<br>of<br>polyethylen<br>e glycol are<br>soluble in<br>water and<br>miscible in<br>all<br>proportions<br>with other<br>polyethylen<br>e glycols.   | soluble in<br>water;<br>slightly<br>soluble in<br>ethanol<br>(95%);<br>insoluble in<br>organic<br>solvents |
| Viscosity                  | 1000mPas<br>(1000cP) as<br>a melt at<br>77 <sup>0</sup> C for<br>poloxamer<br>188.                                  | 400-620 cps<br>(25°C, neat)                                                                                                                 | _                                                                                                                                                                                                                                  | _                                                                                                                                 | _                                          | 3.9- 4.8                                                                                                                                                     | High<br>viscosity<br>40.0–65.0<br>Medium<br>viscosity<br>21.0–33.0<br>Low<br>viscosity<br>4.0–7.0          |
| Ph.Ceutical<br>Application | Used in pharmaceuti                                                                                                 | used in<br>biochemical                                                                                                                      | used in<br>pharmaceuti                                                                                                                                                                                                             | Sodium<br>laurvl                                                                                                                  | used as<br>anionic                         | used in a variety of                                                                                                                                         | Polyvinyl alcohol is                                                                                       |
|                            | cal                                                                                                                 | applications                                                                                                                                | cal products                                                                                                                                                                                                                       | sulfate is                                                                                                                        | surfactants                                | pharmaceut                                                                                                                                                   | used                                                                                                       |

www.iajps.com

Page 6651

|                                     | as<br>emulsifying<br>and<br>solublizing<br>agent                                                                                                                                                                                   | including:<br>solubilizing<br>proteins,<br>isolating<br>nuclei from<br>cells in<br>culture,5<br>growing of<br>tubercle<br>bacilli,6 and<br>emulsifying<br>and dispersing<br>substances in<br>medicinal and<br>food products                                                                                                                                  | as<br>dispersing,<br>emulsifying,<br>and<br>stabilizing<br>agents, and<br>are included<br>in<br>intramuscula<br>r and<br>intravenous<br>injections,<br>parenteral<br>nutrition<br>formulations                                                                                                                                                 | an anionic<br>surfactant<br>employed<br>in a wide<br>range of<br>nonparente<br>ral<br>pharmaceut<br>ical<br>formulation<br>s and<br>cosmetics.                                                               | in<br>pharmaceuti<br>cal<br>formulations                                                                                                                 | ical<br>formulation<br>s, including<br>parenteral,<br>topical,<br>ophthalmic,<br>oral, and<br>rectal<br>preparation<br>s.                                                                                                          | primarily in<br>topical<br>pharmaceuti<br>cal and<br>ophthalmic<br>formulations<br>; It is used<br>as a<br>stabilizing<br>agent for<br>emulsions<br>(0.25–3.0%<br>w/v).                                      |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stability &<br>Storage<br>Condition | Aqueous<br>solutions are<br>stable in the                                                                                                                                                                                          | Aqueous<br>solutions of<br>polysorbates                                                                                                                                                                                                                                                                                                                      | products.<br>They are<br>also<br>hygroscopic                                                                                                                                                                                                                                                                                                   | Sodium<br>lauryl<br>sulfate is                                                                                                                                                                               | stable in the<br>solid state<br>when stored                                                                                                              | Polyethyle<br>ne glycols<br>are                                                                                                                                                                                                    | stable when<br>stored in a<br>tightly                                                                                                                                                                        |
|                                     | presence of<br>acids,<br>alkalis, and<br>metal ions.<br>However,<br>aqueous<br>solutions<br>support<br>mold<br>growth. The<br>bulk<br>material<br>should be<br>stored in a<br>well-closed<br>container in<br>a cool, dry<br>place. | as well as the<br>neat liquid will<br>undergo<br>autoxidation<br>over time, with<br>changes being<br>catalyzed by<br>light, increased<br>temperature,<br>and copper<br>sulfate.9<br>Solutions are<br>reasonably<br>stable at 2 - 8<br>°C for short<br>periods. For<br>special<br>applications,<br>storage under<br>argon or<br>nitrogen may<br>be preferred. | and subject<br>to microbial<br>degradation.<br>When<br>heated,<br>lecithin's<br>oxidize,<br>darken, and<br>decompose.<br>Temperature<br>s of 160–<br>180C will<br>cause<br>degradation<br>within 24<br>hours. All<br>lecithin<br>grades<br>should be<br>stored in<br>well-closed<br>containers<br>protected<br>from light<br>and<br>oxidation. | stable<br>under<br>normal<br>storage<br>conditions<br>The bulk<br>material<br>should be<br>stored in a<br>well-closed<br>container<br>away from<br>strong<br>oxidizing<br>agents in a<br>cool, dry<br>place. | at room<br>temperature.<br>The solid<br>material is<br>hygroscopic<br>and should<br>be stored in<br>an airtight<br>container in<br>a cool, dry<br>place. | chemically<br>stable in air<br>and in<br>solution,<br>Polyethyle<br>ne glycols<br>and<br>aqueous<br>polyethylen<br>e glycol<br>solutions<br>can be<br>sterilized<br>by<br>autoclaving<br>, filtration,<br>or gamma<br>irradiation. | sealed<br>container in<br>a cool, dry<br>place.<br>Polyvinyl<br>alcohol<br>undergoes<br>slow<br>degradation<br>at 1008C<br>and rapid<br>degradation<br>at 2008C; it<br>is stable on<br>exposure to<br>light. |
| ties                                | on the<br>relative<br>concentratio<br>ns,<br>poloxamer<br>188 is<br>incompatibl                                                                                                                                                    | with alkalis,<br>heavy metal<br>salts, phenols,<br>and tannic<br>acid. They<br>may reduce the<br>activity of                                                                                                                                                                                                                                                 | e with<br>esterase<br>owing to<br>hydrolysis.                                                                                                                                                                                                                                                                                                  | lauryl<br>sulfate is<br>incompatib<br>le with<br>salts of<br>polyvalent<br>metal ions,                                                                                                                       | sodium is<br>incompatibl<br>e with acids<br>at $pH < 1$<br>and with<br>alkalis at $pH$<br>> 10.                                                          | can exhibit<br>some<br>oxidizing<br>activity<br>owing to<br>the<br>presence of                                                                                                                                                     | incompatibl<br>e at high<br>concentratio<br>n with<br>inorganic<br>salts,<br>especially                                                                                                                      |

| phenols and | many            | aluminum,    | impurities  | phosphates;   |
|-------------|-----------------|--------------|-------------|---------------|
| parabens    | preservatives.8 | lead, tin or | and         | precipitation |
|             |                 | zinc, and    | secondary   | of polyvinyl  |
|             |                 | precipitates | products    | alcohol 5%    |
|             |                 | with         | formed by   | w/v can be    |
|             |                 | potassium    | autoxidatio | caused by     |
|             |                 | salts.       | n.          | phosphates.   |
|             |                 |              | polyethylen |               |
|             |                 |              | e glycol    |               |
|             |                 |              | grades.     |               |

| Excipient Name | Poly vinyl    | HPC [18]           | НРМС                  | Transcutol            | Glycofurol[           | Ethanol                      | Isopropan           |
|----------------|---------------|--------------------|-----------------------|-----------------------|-----------------------|------------------------------|---------------------|
|                | pyrrolidone   |                    | K-15 [20]             |                       | 21]                   |                              | ol                  |
| Symonyum       | K-30 [19]     | Callulana          | Mathaaal              | Conhital              | Tatraalwaal           | Etherl                       | Dubbing             |
| Synonym        | Povidone      | Cellulose          | tylopur               | Carbitor              | Tetragiycoi           | alcohol                      | alcohol             |
| Molecular      | 50,000daltons | 50000-             | ,tyiopui              | 134.17356             | 190.24g/mol           | 46.069                       | 60.1 g/mol          |
| Weight         |               | 1250000<br>daltons |                       | g/mol                 |                       | g·mol−1                      |                     |
| Category       | Film former   | Stabilizing        | Stabilizing           | solubilizer           | Penetration           | Organic                      | Disinfectan         |
| <b>D</b>       | XX71 ·        | agent              | agent                 | 0.1.1                 | agent                 | solvent                      | t                   |
| Description    | White to      | White to           | White to off          | Colourless            | Clear,                | volatile,                    | Clear,              |
|                | fine powder   | color powder       | fibrous               | liquid                | liquid                | Colorless                    | mobile              |
|                | inte powder   | color powder       | powder or             | iiquid                | iiquid                | liquid                       | volatile.           |
|                |               |                    | granules              |                       |                       | 1                            | flammable           |
|                |               |                    | _                     |                       |                       |                              | liquid              |
| M.P            | Softens at    | Softens at         | browns at             | -108°C                | _                     | $-114.14 \pm$                | -88.5°C             |
|                | 150°C         | 130°C              | 190–2008C;            |                       |                       | 0.03°C                       |                     |
|                |               | Chars at $260-$    | chars at              |                       |                       | $(-1/3.45 \pm 0.05 \circ E)$ |                     |
|                |               | 275 C              | 223–2308C.            |                       |                       | 159.01 +                     |                     |
|                |               |                    | transition            |                       |                       | 0.03 K)                      |                     |
|                |               |                    | temperature           |                       |                       | ,                            |                     |
|                |               |                    | is 170–               |                       |                       |                              |                     |
|                |               |                    | 1808C.                |                       |                       |                              |                     |
|                |               |                    |                       |                       |                       |                              |                     |
|                |               |                    |                       |                       |                       |                              |                     |
| B.P            |               |                    |                       | 196to202°             | 80-100 <sup>0</sup> C | 78.24 ±                      | 82.4 <sup>0</sup> C |
|                | _             | _                  | _                     | С                     |                       | 0.09°C                       |                     |
|                |               |                    |                       |                       |                       | $(172.83 \pm$                |                     |
|                |               |                    |                       |                       |                       | 0.16 °F;                     |                     |
|                |               |                    |                       |                       |                       | 351.39 ±                     |                     |
| Donaitre       | 1 190 a/am2   | 0.5 a/am2          | (bullt).              | @ 20°C                |                       | 0.09 K)                      | 2.07 (cin -         |
| Density        | 1.180 g/cm5   | 0.5g/cm5           | (Durk):<br>0.3/1g/cm3 | @ 20 C<br>8 24 lb/gal | —                     | 0.7893                       | 2.07 (air = 1)      |
|                |               |                    | (tapped):             | 0.24 10/gai           |                       | °C)                          | 1)                  |
|                |               |                    | 0.557g/cm3            |                       |                       |                              |                     |
|                |               |                    | (true):               |                       |                       |                              |                     |
|                |               |                    | 1.326g/cm             |                       |                       |                              |                     |
| Moisture       | povidone is   | Typical            | hypromellos           | < 0.10 %              | 0.2–5% at             |                              | 0.1–13%             |
| Content        | very          | equilibrium        | e absorbs             |                       | ambient               |                              | w/w for             |
|                | hygroscopic,  | moisture           | moisture              |                       | temperature           |                              | commercial          |

www.iajps.com

|             |                          |                               |                  | 1            | 1.000          |              |                  |
|-------------|--------------------------|-------------------------------|------------------|--------------|----------------|--------------|------------------|
|             | significant              | content values                | from the         |              | and 30%        |              | grades           |
|             | amounts of               | at 25°C are 4%                | atmosphere;      |              | relative       |              | (13% w/w         |
|             | moisture being           | w/w at 50%                    | the amount       |              | humidity.      |              | correspond       |
|             | absorbed at              | relative                      | of water         |              |                |              | s to the         |
|             | low relative             | humidity and                  | absorbed         |              |                |              | water            |
|             | humidities               | 12%  m/m at                   | depends          |              |                |              | azeotrope)       |
|             | numunues.                | 12/0 w/w at $9.40/$ molective | ucpellus         |              |                |              | azeonope).       |
|             |                          |                               |                  |              |                |              |                  |
|             |                          | humidity.                     | initial          |              |                |              |                  |
|             |                          |                               | moisture         |              |                |              |                  |
|             |                          |                               | content and      |              |                |              |                  |
|             |                          |                               | the              |              |                |              |                  |
|             |                          |                               | temperature      |              |                |              |                  |
|             |                          |                               | and relative     |              |                |              |                  |
|             |                          |                               | humidity of      |              |                |              |                  |
|             |                          |                               | the              |              |                |              |                  |
|             |                          |                               | surrounding      |              |                |              |                  |
|             |                          |                               | air              |              |                |              |                  |
| Defue etime |                          | D 20                          | all.             |              |                | (nD) 1 2(11) | "D 20            |
| Kerractive  | -                        | $\Pi D 20 =$                  | -                | -            | 11040 =        | (IID) 1.5011 | IID 20 =         |
| Index       |                          | 1.5555 for a                  |                  |              | 1.4545         |              | 1.3770; nD       |
|             |                          | 2% W/V                        |                  |              |                |              | 25 =             |
|             |                          | aqueous                       |                  |              |                |              | 1.3749.          |
|             |                          | solution.                     |                  |              |                |              |                  |
| Solubility  | freely soluble           | freely soluble                | soluble in       | Diethylene   | Imiscible in   | Soluble in   | miscible         |
|             | in acids,                | in water below                | cold water,      | glycol       | arachis oil,   | water.       | with             |
|             | chloroform,              | 38°C, forming                 | forming a        | monoethyl    | petroleum      | Soluble in   | benzene,         |
|             | ethanol (95%).           | a smooth.                     | viscous          | ether        | ether.         | ether.       | chloroform.      |
|             | ketones.                 | clear, colloidal              | colloidal        | soluble in   |                | Soluble in   | ethanol          |
|             | methanol and             | solution                      | solution:        | ethanol and  |                | acetone      | (95%)            |
|             | water.                   | solution.                     | practically      | water        |                | Soluble in   | ()570),<br>other |
|             | water,                   |                               | in a lable in    | Water.       |                |              | etilei,          |
|             | practically              |                               |                  | Partially    |                |              | grycerin,        |
|             | insoluble in             |                               | chloroform,      | soluble in   |                | Soluble in   | and water.       |
|             | ether,                   |                               | ethanol          | vegetable    |                | oils/fats.   | Soluble in       |
|             | hydrocarbons,            |                               | (95%), and       | oils and     |                | Soluble in   | acetone;         |
|             | and mineral oil          |                               | ether.           | insoluble in |                | methanol.    | insoluble in     |
|             |                          |                               |                  | mineral      |                | Soluble in   | salt             |
|             |                          |                               |                  | oils.        |                | acids.       | solutions.       |
| Viscosity   | Grade                    | Viscosity of                  | Aqueous          | (@ 25°C,     | 8–18mPas       | 1.2 mPa·s    | (dynamic):       |
|             | Dynamic                  | aqueous                       | solutions are    | cP) 4.5      | (8–18cP) at    | (at 20°C),   | 2.43mPas         |
|             | viscosity                | solutions of                  | most             | ,            | 20°C for       | 1.074 mPa·s  | (2.43cP) at      |
|             | (mPas)                   | Klucel                        | commonly         |              | Glycofurol     | (at 25°C)    | 20°C             |
|             | $K_{-11/1/11} = 13$      | (Ashland                      | prepared         |              | 75             | (ut 25 C)    | 20 0             |
|             | 11/141.3-                | Aqualon                       | although         |              | 15.            |              |                  |
|             | $2.5 \text{ K}^{-10/10}$ | Aqualon<br>Essentianal        | h-man and a line |              |                |              |                  |
|             | 1.3-3.3 K-               | Functional                    | nypromenos       |              |                |              |                  |
|             | 24/21 3.5-5.5            | ingredients) at               | e may also       |              |                |              |                  |
|             | K-28/32 5.5-             | 25°C                          | be dissolved     |              |                |              |                  |
|             | 8.5 K-85/95              |                               | in aqueous       |              |                |              |                  |
|             | 300–700                  |                               | alcohols         |              |                |              |                  |
|             |                          |                               | such as          |              |                |              |                  |
|             |                          |                               | ethanol.         |              |                |              |                  |
| Ph.Ceutical | Povidone is              | used in                       | Hypromello       | Solubilizer  | intravenous    | Ethanol is   | Isopropyl        |
| Application | used as                  | cosmetics and                 | se is widely     | of many      | or             | used in      | alcohol          |
|             | solubilizer in           | in food                       | used in oral.    | active       | intramuscula   | medical      | (propan-2-       |
|             | oral and                 | products as an                | ophthalmic       | ingredients  | r injection in | wipes and    | ol) is used      |
|             | parenteral               | emulsifier and                | nasal and        | (i.e.        | concentratio   | most         | in               |
|             | formulations             | stabilizer                    | topical          | trinitrine   | ns un to       | commonly     | cosmetics        |
|             | iorniulations,           | submitter.                    | topical          | umume,       | na up to       | commonly     | cosmettes        |

www.iajps.com

Page 6654

|                                     | and to enhance<br>the dissolution<br>of poorly<br>soluble drugs                                                                                                                                                                                               |                                                                                                                                                                                                             | pharmaceuti<br>cal<br>formulations                                                                                                                                                                                                                                 | indomethac<br>in<br>nifedipine,<br>hormones,                                                                                                                                                | 50% v/v.(1–<br>5) It has also<br>been<br>investigated,                                                                                                                      | in<br>antibacterial<br>hand<br>sanitizer                                                                                                                                                                                                                                                                                 | and<br>pharmaceut<br>ical<br>formulation                                                                                                                                                                                   |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | soluble drugs<br>from solid<br>dosage forms.                                                                                                                                                                                                                  |                                                                                                                                                                                                             | Hypromello<br>se is also<br>used as a<br>suspending<br>and<br>thickening<br>agent in<br>topical<br>formulations                                                                                                                                                    | hormones,<br>sterols).<br>Absorption<br>enhancer.<br>Transcutol<br>P can be<br>used in<br>topical,<br>transdermal<br>and oral<br>pharmaceut<br>ical<br>preparation<br>s.                    | investigated,<br>mainly in<br>animal<br>studies, for<br>use as a<br>penetration<br>enhancer<br>and solvent<br>in topical(6)<br>and<br>intranasal<br>formulations<br>.(7–10) | sanitizer<br>gels as an<br>antiseptic<br>for its<br>bactericidal<br>and anti-<br>fungal<br>effects.                                                                                                                                                                                                                      | formulation<br>s primarily<br>as a solvent<br>in topical<br>formulation<br>s.<br>Therapeuti<br>cally,<br>isopropyl<br>alcohol has<br>been<br>investigate<br>d for the<br>treatment<br>of<br>postoperati<br>ve nausea<br>or |
| Stability &<br>Storage<br>Condition | Povidone may<br>be stored<br>under ordinary<br>conditions<br>without<br>undergoing<br>decomposition<br>or degradation.<br>However,<br>since the<br>powder is<br>hygroscopic, it<br>should be<br>stored in an<br>airtight<br>container in a<br>cool, dry place | Hydroxypropy<br>l cellulose<br>powder is a<br>stable material,<br>although it is<br>hygroscopic<br>after drying,<br>powder should<br>be stored in a<br>well-closed<br>container in a<br>cool, dry<br>place. | Hypromello<br>se powder is<br>a stable<br>material,<br>although it<br>is<br>hygroscopic<br>after drying.<br>Solutions<br>are stable at<br>pH 3–11.<br>Hypromello<br>se powder<br>should be<br>stored in a<br>well-closed<br>container, in<br>a cool, dry<br>place. | Stored in<br>its original<br>hermeticall<br>y closed<br>container.<br>The<br>product is<br>packed<br>under<br>nitrogen<br>atmosphere<br>and must<br>be used<br>shortly<br>after<br>opening. | Stable if<br>stored under<br>nitrogen in a<br>well-closed<br>container<br>protected<br>from light,<br>in a cool,<br>dry place.                                              | Keep out of<br>direct<br>sunlight.<br>Store in a<br>dry area.<br>Ventilation<br>at floor<br>level.<br>Fireproof<br>storeroom.<br>Provide for<br>an automatic<br>sprinkler<br>system.<br>Provide for<br>a tub to<br>collect<br>spills.<br>Provide the<br>tank with<br>earthing.<br>Meet the<br>legal<br>requirement<br>s. | Isopropyl<br>alcohol<br>should be<br>stored in an<br>airtight<br>container in<br>a cool, dry<br>place.                                                                                                                     |
| Incompabili<br>Ties                 | Povidone is<br>compatible in<br>solution with a<br>wide range of                                                                                                                                                                                              | Hydroxypropy<br>l cellulose in<br>solution<br>demonstrates                                                                                                                                                  | Hypromello<br>se is<br>incompatibl<br>e with some                                                                                                                                                                                                                  | Incompatib<br>le with<br>Strong<br>oxidizers                                                                                                                                                | Incompatibl<br>e with<br>oxidizing<br>agents                                                                                                                                | Incompatibl<br>e with<br>Strong<br>acids.                                                                                                                                                                                                                                                                                | oxidizing<br>agents such<br>as<br>H2O2and                                                                                                                                                                                  |
|                                     | norganic salts,<br>natural and<br>synthetic<br>resins, and                                                                                                                                                                                                    | some<br>incompatibility<br>with<br>substituted                                                                                                                                                              | oxidizing<br>agents.<br>Since it is<br>nonionic,                                                                                                                                                                                                                   | (e.g.<br>Chlorine,<br>Peroxides,<br>etc.).;                                                                                                                                                 |                                                                                                                                                                             | Strong<br>bases.                                                                                                                                                                                                                                                                                                         | nitric acid,.<br>Isopropyl<br>alcohol<br>may be                                                                                                                                                                            |

| other<br>chemicals. | phenol<br>derivatives,<br>such as methyl | hypromellos<br>e will not<br>complex | Strong acids. |  | salted out<br>from<br>aqueous |
|---------------------|------------------------------------------|--------------------------------------|---------------|--|-------------------------------|
|                     | paraben and                              | with                                 |               |  | mixtures .                    |
|                     | propyl                                   | metallic                             |               |  |                               |
|                     | paraben.                                 | salts or ionic                       |               |  |                               |
|                     |                                          | organics to                          |               |  |                               |
|                     |                                          | form                                 |               |  |                               |
|                     |                                          | insoluble                            |               |  |                               |
|                     |                                          | precipitates.                        |               |  |                               |

## EXCIPIENT MECHANISM [22]

| Sr  | Excipients                     | Mechanism of action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no. | name                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1   | Poloxamer                      | Poloxamer seals stable defects in cell membranes induced by skeletal muscle cell membranes rupture induced by ischemia-reperfusion injury, electroporation, irradiation, and heat damage, In addition to the direct interaction with the membrane, P188 was shown to inhibit MMP-9 protein levels and activity, as well as the NF- $\kappa$ B signal pathway, in the model of acute cerebral ischemia, which is associated with increased BBB permeability leading to cerebral edema and increased penetration .                                                                                                                                                                                                                                                                                                         |
| 2   | Tween 80                       | Polysorbate 80 is one of the primary components of protein formulations. This drug inhibits interfacial damage of the protein molecule that undergoes mechanical stress during shipping and handling. Polysorbate 80 also affects the formulation photostability. Exposure to light of polysorbate 80 aqueous solution results in peroxide generation, which in turn may lead to oxidation of the susceptible amino acid residues in the protein molecule.                                                                                                                                                                                                                                                                                                                                                               |
| 3   | Lecithines                     | Lecithin in supressing cholesterol absorption. <i>in vitro</i> studies were performed to investigate a possible mechanism by which lecithin supresses the intestinal cholesterol absorption. The hypothesis was further tested by determining if lecithin had any effect on the molecular weight of the micelles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4   | PVP K-30                       | Povidone-iodine is a water-soluble complex that mediates a bactericidal or virucidal action following the gradual liberation of free iodine from the complex at the application site to react with the pathogen. Please refer to the drug entry for Povidone-iodine for the full mechanism of action of the complex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5   | Sodium<br>lauryl<br>sulfate    | Like other surfactants, SLS is amphiphilic. It thus migrates to the surface of liquids, where its alignment<br>and aggregation with other SLS molecules lowers the surface tension. This allows for easier spreading<br>and mixing of the liquid. SLS has potent protein denaturing activity and inhibits the infectivity of<br>viruses by solubilizing the viral envelope and/or by denaturing envelope and/or capsid proteins.                                                                                                                                                                                                                                                                                                                                                                                         |
| 6   | Docusate<br>sodium             | The effects of docusate may arise from the direct laxative effects of the molecule on the intestinal mucosa, or the indirect action of local endogenous prostaglandins released from the intestine upon contact with docusate. Docusate may involve multiple mechanisms of action. It stimulates the net secretion of water, sodium, chloride, and potassium and inhibits the net absorption of bicarbonate in the small intestine in vivo. It also induces active electrolyte secretion by increasing mucosal cAMP concentrations, as cAMP inhibits coupled sodium chloride entry and stimulates active chloride secretion <i>in vitro</i> . <i>In vivo</i> , the actions of cAMP are involved in inhibiting bicarbonate absorption in the jejunum. These changes promote the passive secretion of water and potassium. |
| 7   | Polyethylene<br>glycol         | Polyethylene glycol functions as an osmotic agent, causing excess water to be retained in the stool, stimulating a bowel movement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8   | Polyvinyl<br>alcohol           | As a synthetic resin with hydrophilic properties, it increases the persistence of tear film and therefore lubricates and soothes dry/irritated eyes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9   | Hydroxy<br>propyl<br>cellulose | Hydroxypropyl cellulose is a derivative of cellulose that is soluble in both water and organic solvents.<br>It is particularly good at trapping water and producing a film that serves as a barrier to water loss.<br>Hydroxypropyl cellulose possesses good surface activity but does not gel as it forms open helical coils.<br>In general Hydroxypropyl cellulose is a water-soluble thickener, emulsifier and film-former.                                                                                                                                                                                                                                                                                                                                                                                           |
| 10  | Hydroxy<br>propyl              | Promotes corneal wetting by the stabilization and thickening the pre-corneal tear film and prolonging the tear film breakdown time, which is usually shortened in dry eye conditions. Hypromellose also acts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|    | methyl<br>cellulose | to lubricate and protect the eye. The surface active properties of the vehicles found in artificial tears solutions act to stabilize the tear film and increase tear viscosity to prevent delay tear evaporation and delay tear drainage. Hypromellose has a physical-chemical action and leads to, in an aqueous solution,                                                                                                                                                                                                                                                               |
|----|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                     | a reduced surface tension as well as an increased level of viscosity. Hypromellose adheres well to the cornea and conjunctiva and provides ample moisture.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 | Transcutol          | Transcutol was enhanced the activity to the facilitation of the drug partioning and diffusion into the skin. Another mechanism is percutaneous penetration enhancement                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | Glycofurol          | Potentiation and inhibition of pharmacological actions of hexobarbital and zoxazolamine by glycofurol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | Ethanol             | Ethanol affects the brain's neurons in several ways. It alters their membranes as well as their ion channels, enzymes, and receptors. Alcohol also binds directly to the receptors for acetylcholine, serotonin, GABA, and the NMDA receptors for glutamate. The sedative effects of ethanol are mediated through binding to GABA receptors and glycine receptors (alpha 1 and alpha 2 subunits). It also inhibits NMDA receptor functioning. In its role as an anti-infective, ethanol acts as an osmolyte or dehydrating agent that disrupts the osmotic balance across cell membranes. |
| 14 | Isopropanol         | Isopropyl Alcohol is an isomer of propyl alcohol with antibacterial properties. Although the exact mechanism of isopropanol's disinfecting action is not known, it might kill cells by denaturing cell proteins and DNA, interfering with cellular metabolism, and dissolving cell lipo-protein membranes.                                                                                                                                                                                                                                                                                |

# FUNCTIONS OF EXCIPIENTS IN A FORMULATION

The active drug substance in a dosage form. Like drug substances, excipients are also derived from natural sources or are synthesized either by chemical or any other means.[23]

In earlier days, excipients were considered as inactive ingredients but with passage of time pharmaceutical scientists learned that excipients are not inactive and have a substantial impact in dosage forms. [24]

There is variability in the performance of an excipient both from batch to batch within a single manufacturer as well as between batches from different manufacturers.[25]

Now a day's excipients are known to have well defined functional roles in pharmaceutical dosage form. [26]

Their various functions are modulating solubility and bioavailability of the API's, enhancing stability of the active ingredient in finished dosage from, maintaining pH and osmolarity of liquid formulation, acting as an anti-oxidant, emulsifying agent, aerosols, tablet binders, disintegrates, lubricants and diluents.[27]

Excipients also interacts with the active principle in a formulated dosage form and provides a matrix that can affect critical quality attributes of drug substance, including stability and bioavailability.

Excipients have a potential influence on finished dosage form, affect the safety and efficacy of a product. Thus, Pharmaceutical companies have to be careful consideration for excipients while incorporating into a dosage form.

### CONCLUSION

This review may supply precious knowledge regarding the excipients which are the substances used in nanosuspension to improve stability, and bioavailability of drug. Excipients plays vital role in pharmaceutical dosage forms, it must be evaluated for their safety and stability. The various excipient interactions drug-excipient interactions, like excipient-excipient interactions may render the excipient harmful for use in formulation. In order to avoid the use of incompatible excipients and to assure that that the excipients are safe and stable for use in the designing of the formulation, various stability testing procedures are carried out where the excipients are subjected to extreme conditions of temperature, humidity etc. The safety assurance of excipients helps the formulator to design an effective and safe dosage form with the use of efficient and safe excipients. Thus, for an excipient to be in a formulation it must be highly stable, safe and efficacious, and above all it must comply with the expected performance in the formulation.

## **CONFLICT OF INTEREST**

The author confirm that this review article content no conflict of interest

### AKNOWLEDGMENT

The principle author acknowledges the financial assistance provided by R. C. Patel Institute of Pharmaceutical Education and Research (RCPIPER), ShirpurDist, Dhule.

### **REFRENCES**

- Sastry, S.V., J.R. Nyshadham, and J.A. Fix, *Recent technological advances in oral drug delivery–a review*. Pharmaceutical science & technology today, 2000. 3(4): p. 138-145.
- 2. Seager, H., *Drug-delivery products and the Zydis fast-dissolving dosage form.* Journal of pharmacy and pharmacology, 1998. **50**(4): p. 375-382.
- 3. Chaudhari, S.P. and P.S. Patil, *Pharmaceutical excipients: a review*. Int J Adv Pharm Biol Chem, 2012. **1**(1): p. 21-34.
- 4. Katdare, A. and M. Chaubal, *Excipient* development for pharmaceutical, biotechnology, and drug delivery systems. 2006: CRC Press.
- Gohel, M. and P.D. Jogani, A review of coprocessed directly compressible excipients. J Pharm Pharm Sci, 2005. 8(1): p. 76-93.
- Jackson, K., D. Young, and S. Pant, *Drug-excipient interactions and their affect on absorption*. Pharmaceutical science & technology today, 2000. 3(10): p. 336-345.
- Quinteros, D.A., et al., Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs. european journal of pharmaceutical sciences, 2008. 33(1): p. 72-79.
- Verma, S., et al., *Pharmaceutical excipients: A regulatory aspect*. The Pharma Innovation, 2016. 5(6, Part B): p. 124.
- 9. Patel, H., V. Shah, and U. Upadhyay, *New pharmaceutical excipients in solid dosage forms-A review.* International Journal of Pharmacy & Life Sciences, 2011. **2**(8).
- 10. Ansel, H.C., N.G. Popovich, and L.V. Allen, *Pharmaceutical dosage forms and drug delivery systems*. 1995: Lippincott Williams & Wilkins.
- 11. Gupta, V., et al., Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta pharmaceutica, 2007. **57**(2): p. 173-184.
- 12. Divya, G.S., et al., Intercontinental journal of pharmaceutical Investigations and Research.
- 13. Rayaprolu, B.M., J.J. Strawser, and G. Anyarambhatla, *Excipients in parenteral formulations: selection considerations and*

*effective utilization with small molecules and biologics.* Drug development and industrial pharmacy, 2018. **44**(10): p. 1565-1571.

- Pifferi, G. and P. Restani, *The safety of pharmaceutical excipients*. Il Farmaco, 2003. 58(8): p. 541-550.
- Lee, K., S.-C. Shin, and I. Oh, *Fluorescence* spectroscopy studies on micellization of poloxamer 407 solution. Archives of pharmacal research, 2003. 26(8): p. 653-658.
- Vasistha, P. and A. Ram, *Non-ionic provesicular* drug carrier: an overview. Asian J. Pharm. Clin. Res, 2013. 6(1): p. 38-42.
- Mohl, S. and G. Winter, *Continuous release of rh-interferon* α-2a from triglyceride matrices. Journal of controlled release, 2004. 97(1): p. 67-78.
- Uddameri, V., A. Morse, and K.J. Tindle, Hydraulic fracturing impacts and technologies: A multidisciplinary perspective. 2015: CRC Press.
- Horn, D. and W. Ditter, *Chromatographic study* of interactions between polyvinylpyrrolidone and drugs. Journal of pharmaceutical sciences, 1982. 71(9): p. 1021-1026.
- Chowhan, Z., Role of binders in moistureinduced hardness increase in compressed tablets and its effect on in vitro disintegration and dissolution. Journal of pharmaceutical sciences, 1980. 69(1): p. 1-4.
- Spiegelberg, H., et al., A new injectable solvent (glycofurol). Arzneimittel-Forschung, 1956. 6(2): p. 75.
- 22. Bhattacharyya, L., et al., *Excipients: background/introduction.* Excipient development for pharmaceutical, biotechnology, and drug delivery systems, 2006: p. 1-3.
- 23. Savjani, K.T., A.K. Gajjar, and J.K. Savjani, Drug solubility: importance and enhancement techniques. ISRN pharmaceutics, 2012. 2012.
- 24. Osterberg, R.E., et al., *Trends in excipient safety evaluation*. International journal of toxicology, 2011. **30**(6): p. 600-610.
- Pifferi, G., P. Santoro, and M. Pedrani, *Quality* and functionality of excipients. Il Farmaco, 1999. 54(1-2): p. 1-14.
- 26. Uchiyama, M., *Regulatory status of excipients in Japan*. Drug information journal, 1999. **33**(1): p. 27-32.
- 27. Cartwright, A.C., *International pharmaceutical product registration*. 1994: CRC Press.