Saleh Alharbi

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.2609207

Available online at: <u>http://www.iajps.com</u>

Research Article

CLINICAL OUTCOMES OF LOWER RESPIRATORY TRACT INFECTIONS; AN EPIDEMIOLOGICAL STUDY COMPARING VIRAL AND NON-VIRAL LOWER RESPIRATORY TRACT INFECTIONS IN JEDDAH

¹ Saleh Alharbi

¹Department of Paediatrics, Umm Al-Qura University, Mecca; Department of Pediatric, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia.

Article Received: January 2019	Accepted: February 2019	Published: March 2019
Abstract:		
Abstract: Background: The aim of this study is to find if Viexisting Chronic Lung Diseases (CLD) or has no young children in Jeddah. Methods: This was a redepartment of pediatrics at doctor Soliman Fakee and through the chronic stage of the disease. A clinical examination, laboratory investigations, trup and excluded from analysis. Nasopharyngeal was calculated as per protocol on 129 patients. (26%); 19 patients out of the 34 (56%) had CLD negative NPA Viral Test (74%); 59 patients out of significant (p-value = 0.524). We concluded that CLD.Results show that there is significant differe < 0.05): <u>IN V-RTIs</u> ; Age at time of diagnosis in leoxygen saturation is less (92.50 ± 3.72 vs 95.96 ± Dyspnea is more (44.1% vs 9.5%), and Diarrheat Conclusion: The study shows that V-LRTI constatistically occurs in younger age with more host V-LRTI with less Oxygen saturation than Non-V-	relation. The study also aimed to learn all retrospective study of 136 young patients h hospital, Jeddah, diagnosed primarily a database was developed to provide the inf reatment and final diagnosis. Among the 1. Aspirate (NPA) test type was done to iden Results: A total number of 34 patients of & 15 patients (44%) had no CLD. On th of the 95 (62%) had CLD & 36 patients (3 there is no significant difference between of ence between V-LRTI & non- V-LRTI press (0.36 + 0.31 vs 0.79 \pm 0.07), admission (0.57), Crackles is more (65.6% vs 40%.09) is more (5.9% Vs 0.0%). estitutes (27%) with RSV being the comm spitalization. Dyspnea, crackles and whe	bout the clinical presentation V-LRTI in of 5 years or less who presented to the s LRTI were enrolled in the acute phase formation about preliminary diagnosis, 36 patients, seven patients lost to follow tify causative viral infection. End-point but of 129 had positive NPA Viral Test e other side, 95 patients out of 129 had 38%) had no CLD. The results are not occurrences of V-LRTI on top of existing ents in the following variables (p-value n to hospital is more (91.2% vs 55.8%), %) Wheezing is more (71.9% vs 43.2%), onest causative virus (79.4%). V-LRTI pezing are statistically more frequent in
Corresponding author:		
Saleh Alharbi,		QR code

Department of Paediatrics, Umm Al-Qura University, Mecca; Department of Pediatric, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia.

Please cite this article in press Saleh Alharbi., Clinical Outcomes Of Lower Respiratory Tract Infections; An Epidemiological Study Comparing Viral And Non-Viral Lower Respiratory Tract Infections In Jeddah., Indo Am. J. P. Sci, 2019; 06(03).

INTRODUCTION:

Respiratory tract infection considered as a very common type of infectious disease worldwide. Many viruses cause respiratory tract infection and are identified by a method Polymerase Chain Reaction (PCR). [1]

Acute Lower respiratory tract (LRT) infections are thought to cause nearly 75% of all acute illnesses and are considered the main cause of hospitalization for infants and young children globally. [2,3]

These infections vary depending on the age group, season, underlying disease and upper or lower respiratory tract involvement. [4] Viral respiratory tract infections play a major role as a national health issue due to increased hospital admissions, labor mortalities and school absenteeism of children and the socio-economical affection of viral respiratory infections are observed especially in wintertime. [5,6] Influenza A, Influenza B, Rhinovirus (RV), Respiratory Syncytial Virus (RSV), Corona Virus (CV), Para Influenza Virus (PIV), Human Meta Pneumo Virus (HMPV) and Human Boca Virus (HBOV) are the common cause of viral respiratory tract infections. [7,8] In the last decade, many new respiratory viruses have emerged, including HMPV, new subtypes of Human Corona Viruses (HCoV) and Boca Virus (HBoV). [9]

Acute attacks of severe lower respiratory tract illness are very common in preschoolers, and almost 14% to 26% of preschoolers present with symptoms of recurrent wheezing during the first six years of life. [1,2] These severe attacks are often associated with morbidity, resulting in multiple visits to physicians, and emergency departments. Most of these cases were diagnosed with asthma, and among them, 20.9% seek emergency care, and 6.5% are hospitalized every year. [10]

Children diagnosed with LRT infections with wheezing are more prone to develop recurrent wheezing and/or asthma later in childhood than those having LRT infections without wheezing, even though they are affected by the same virus, previous studies have reported a higher risk for young children who are more likely to have wheezing during or following a viral LRT infection or Chronic Lung Diseases (CLD). [11,12]

In our study, clinical outcomes of patients with acute LRTIs in preschool age were studies to compare between the clinical outcomes of V-LRTI and Non-V-LRTIs with a primary objective to insight whether V-

LRTI occurs more common in preschool children with Chronic Lung Diseases (CLD).

METHODOLOGY:

In this study, we enrolled 136 young patients of 5 years or less, diagnosed primarily as LRTI between January 2008 and January 2009. All the patients were in the acute phase and followed up until cure. Finally, the diagnosis of the presence of chronic lung disease was made.

Study design

This retrospective study involved children 0 to 5 years of age who presented to the pediatric outpatient and emergency departments at doctor Soliman Fakeeh hospital, Jeddah with LRTI and positive respiratory culture for respiratory virus.

The study sample was sourced from virus culture positive specimens. Subsequently, a chart review (emergency department, outpatient and inpatient records) was done on those positive culture cases and those with a diagnosis of LRTI were selected for analysis.

Recognition of pediatric LRTI was based on the physician diagnosis of pneumonia, bronchitis and bronchiolitis. (All medical codes in the at doctor Soliman Fakeeh hospital, Historical Abstracting System, WinRecs that contain the words "pneumonia", "bronchitis" or "bronchiolitis" were included.) Only the first respiratory isolate, during a single clinical event, was included in the analysis. The studied cases did not include readmissions. Participants' demographic, clinical and radiologic findings were collected. Clinical outcome data were assessed according to days of hospitalization, use of mechanical ventilation, and mortality.

The statistician developed a database to provide the following information:

- 1- Patient demographics (initials of a name; date of birth; age, weight and height at presentation; sex, ethnicity; place of residence)
- 2- Detailed clinical history to include any associated underlying medical condition/s, physical examination on admission, discharge and subsequent medical course over time
- 3- Pertinent laboratory and/or ancillary tests (CXRs, CT scan, histopathology, bronchoscopy, capillary blood gases, and pulmonary function tests) at presentation and subsequent clinic follow up.
- 4- Results of Respiratory Virus Test: Nasopharyngeal Aspirate (NPA) was taken from each patient and tested by Polymerase Chain Reaction (PCR) to detect major respiratory

Saleh Alharbi

viruses namely; Influenza A, Influenza B, Respiratory Syncytial Virus (RSV), Rhinovirus, Enterovirus, Parainfluenza 1 2 & 3, Adenovirus, Human Metapneumovirus (HMPV) and Bordetella virus.

- 5- Treatment of supportive therapy, antibiotics or mechanical ventilation
- 6- We follow up cases through the acute phase to cure.

STATISTICAL ANALYSIS:

Frequency distribution using count and percentage were used to describe categorical data and descriptive statistics using appropriate statistics as a mean average, standard deviation, median, lower quartile and upper quartile to describe numerical data.

Chi-square test (or its equivalents) was used to calculate *the p*-value for categorical data while student t-test (or its equivalents) was used to calculate *the p*-value for numerical data. a *p*-value less than or equal to 0.05 is considered significant

FINDINGS & RESULTS:

Tables showing detailed findings; Demography, Significant social history, Clinical Presentation, Signs, Initial Diagnosis, Symptoms, Significant Past Medical History, Investigations, Therapies Interventions, Referral Pattern and Final Diagnosis are presented at the end.

DISCUSSION:

Our study aims to find the relation between occurrences of V-LRTI on top of CLD. It also aims to study the clinical presentation of LRTI and to compare viral versus non-viral infection specifically

We enrolled 136 children of 5 years or less with LRTI between January 2008 and January 2009 in Jeddah with a preliminary diagnosis of LRTI. We proceeded with detailed clinical history, laboratory investigations, and treatment of the acute phase through to cure and diagnose the presence of chronic lung disease. All patients were performed Respiratory Virus Test. Nasopharyngeal Aspirate (NPA) was taken from each patient and tested by Polymerase Chain Reaction (PCR) to detect major respiratory viruses.

- Our study showed that V-LRTI constituted 26.4% (34 patients out of 129 LRTI patients) and Non-V-LRTI constituted 73.6%. Our results near to results obtained by Leena Ravindra et al that showed "Viral antigens were detected in 28.6% of LRTI.
- The primary objective of our study is to find if V_LRTI occurs more common on top of existing CLD or not. Our results showed that 20 (28.8%) out of 34 patients with V-LRTI had CLD whereas 58 (61.1%) out of 95 patients with none-V-LRTI had CLD. The difference is not significant.

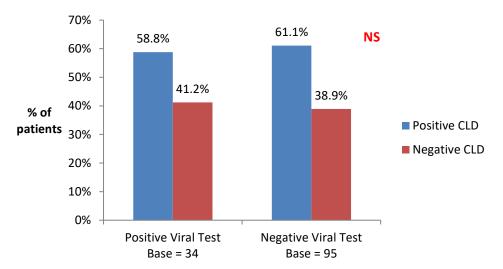
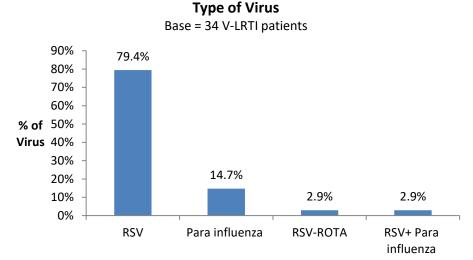



Chart 1: Incidence of Viral Lower Respiratory Tract Infection on top of Chronic Lung Disease

• Respiratory syncytial virus (RSV) is the commonest causative virus; it is the causative virus alone in 79.4% of our cases (27 out of 34) and with other viruses in other 5.8% (2 patients). This result matches Leena Ravindra et al. and Gooskens J et al.in which RSV was the commonest cause of V-LRTI.

Chart 2:

Causative of virus in 34 V-LRTI patients:

_

- Our study showed that cases with positive V-LRTI required higher hospital admissions rate 91.2% (31 of 34) compared to 55.8% (53 of 95) in the non-viral group. In studies done by Gooskens et al. [14] and Akturk H et al showed that RSV is the predominate V-LRTI.
- The mean age in our study was 8.20 ± 7.30 (mean \pm SD) months. The mean age in viral group is less than that of non-viral group ($4.35 \pm 3.71 \& 9.70 \pm 0.85$ respectively). The different is significant (p < 0.001).
- LRTI is more common in males. 61.2% (70 out of 129) were males, and 38.8% were female. The difference in gender between viral & non-viral groups is not significant. Many studies showed that the incidence of LRTI is more common in males. [16,17]
- 23.3% (30 of 129) of cases had a history of sick contacts, and 12.4% had crowded family history (6 persons or more). There is no statistically significant difference between viral & non-viral groups.

- In a study done by Lemke M et al, secondhand (SHS) smoking history was present in 57% of infants. This result is higher than what we have obtained where SHS in our study was 16.3% (21 of 129). There was no statistically significant difference between viral & non-viral groups (23.5%, & 13.7% respectively)
- "Cough" was the predominant symptom. It was a complaint in 98.4% in our sample, this match many other studies. Cough is a symptom in 99.8% Wood et all 99.0% in Michael Harris et al. There was no statistically significant difference between viral & non-viral groups. "Dyspnea" was a complaint in 18.6% (24 of 129 patients). It was 44.1% (15 of 34) in V-LRTI group compared to 9.8% (9 of 95) in Non-V-LRTI group. The differences between other symptoms between the two groups are not significant. The following chart shows the incidence of symptoms in our study

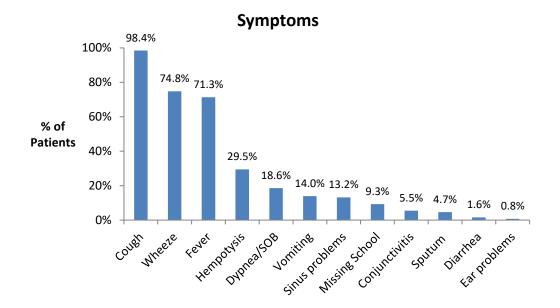


Chart 3 Symptoms by the overall Sample: Base = 129 patients

 65.1% (84 of 129 patients) needed hospitalization. 31 (37%) out the of 84 patients that admitted to hospital were due to the virus. This result is near to what is given by Michelow IC et al (45%). Admission to hospital is more common in viral group 91.2% (31 of 34) compared to 55.8% (53 of 95) in non-viral group. The difference is statistically significant.

CONCLUSION:

- LRTI is a common disease in preschool age. It is more in males than females (61.2% % 38.8% respectively), and Cough and wheezes are the predominant symptoms.
- V-LRTI constitutes 27% with RSV being the commonest causative virus (79.4%).
- V-LRTI statistically occurs in younger age than Non-V-LRTI (4.35 ± 3.71 & 9.70 ± 0.85 months respectively). Admission to hospital is statistically more in V-LRTI (91.2%) than Non-V-LRTI (55.8%). Dyspnea, crackles and wheezing are statistically more frequent in V-LRTI than Non-V-LRTI with less Oxygen saturation.
- CLD is not a predisposing factor in V-LRTI in preschool age.

Recommendation:

- Study the clinical outcomes of LRTI in a large number of patients.
- Study the effect of existing CLD on the clinical outcomes of LRTI.

Tables:

Table 1:Demography

		Overall	Sample	Positive V	Viral Test	Negative '	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Age at Dx (Yrs)	Mean & SD	0.67	0.61	0.36	0.31	0.79	0.07	0.001
Age In Months	Mean & SD	8.20	7.30	4.35	3.71	9.70	0.85	0.000
Gender	Male	79	61.2%	20	58.8%	59	62.1%	0.736
	Female	50	38.8%	14	41.2%	36	37.9%	
Weight (Kg)	Mean & SD	8.61	2.67	10.28	3.70	8.46	0.39	0.194

Table 2:Significant Social History

		Overall	Sample	Positive V	Viral Test	Negative	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Sick contacts (Upper respiratory disease or fever)	Yes	30	23.3%	10	29.4%	20	21.1%	0.322
	No	99	76.7%	24	70.6%	75	78.9%	
Crowding at home (Family member more than 6)	Yes	16	12.4%	4	11.8%	12	12.6%	0.895
	No	113	87.6%	30	88.2%	83	87.4%	
Smoking	Yes No	21 108	16.3% 83.7%	8 26	23.5% 76.5%	13 82	13.7% 86.3%	0.182

Table 3:Clinical Presentation

		Overall	Sample	Positive V	Viral Test	Negative `	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Days of admission	Mean & SD	2.75	1.93	3.10	1.42	2.55	0.30	0.210
Admission to hospital	Yes	84	65.1%	31	91.2%	53	55.8%	0.000
	No	45	34.9%	3	8.8%	42	44.2%	
Chest CT	Yes	29	22.5%	8	23.5%	21	22.1%	0.864
	No	100	77.5%	26	76.5%	74	77.9%	
Barium	Yes	5	3.9%	1	2.9%	4	4.2%	0.742
	No	124	96.1%	33	97.1%	91	95.8%	

		Overall	Sample	Positive V	Viral Test	Negative '	Viral Test	p-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Saturations	Mean & SD	94.12	3.70	92.50	3.72	95.96	0.57	0.001
Crackles	Yes	59	45.7%	21	61.8%	38	40.0%	0.029
	No	70	54.3%	13	38.2%	57	60.0%	
Wheezing	Yes	64	49.6%	23	67.6%	41	43.2%	0.014
	No	65	50.4%	11	32.4%	54	56.8%	
Clubbing	Yes	1	0.8%	1	2.9%	0	0.0%	0.093
	No	128	99.2%	33	97.1%	95	100.0%	

Table 4: Signs

Table 5:Initial Diagnosis

		Overall	Sample	Positive V	Viral Test	Negative	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Pneumonia + wheezing bronchitis	Yes	48	37.2%	12	35.3%	36	37.9%	0.788
	No	81	62.8%	22	64.7%	59	62.1%	
Pneumonia	Yes No	2 127	1.6% 98.4%	0 34	0.0% 100.0%	2 93	2.1% 97.9%	0.394
Wheezing bronchitis	Yes	3	2.3%	1	2.9%	2	2.1%	0.781
	No	126	97.7%	33	97.1%	93	97.9%	
Bronchitis	Yes No	57 72	44.2% 55.8%	10 24	29.4% 70.6%	47 48	49.5% 50.5%	0.043
Bronchiolitis	Yes No	60 69	46.5% 53.5%	21 13	61.8% 38.2%	39 56	41.1% 58.9%	0.038
No of diagnosis	0 1 2	24 88 17	18.6% 68.2% 13.2%	4 25 5	11.8% 73.5% 14.7%	20 63 12	21.1% 66.3% 12.6%	0.488
Presentation	Nothing Bronchioliti s Bronchitis	24 45 41	18.6% 34.9% 31.8%	4 20 4	11.8% 58.8% 11.8%	20 25 37	21.1% 26.3% 38.9%	0.002
	Bronchitis, Bronchioliti s	14	10.9%	4	11.8%	10	10.5%	
	Pneumonia Wheezing bronchitis, Bronchioliti s	2 2	1.6% 1.6%	0 2	0.0% 5.9%	2 0	2.1% 0.0%	
	Wheezing bronchitis, Bronchitis	1	0.8%	0	0.0%	1	1.1%	

		Overall	Sample	Positive V	Viral Test	Negative	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Cough	Yes	127	98.4%	34	100.0%	93	97.9%	0.394
	No	2	1.6%	0	0.0%	2	2.1%	
Sputum (Productive cough)	Yes	6	4.7%	2	5.9%	4	4.2%	0.691
	No	123	95.3%	32	94.1%	91	95.8%	
Hemoptysis	Yes	38	29.5%	7	20.6%	31	32.6%	0.186
	No	91	70.5%	27	79.4%	64	67.4%	
Wheeze	Yes	95	73.6%	28	82.4%	67	70.5%	0.179
	No	34	26.4%	6	17.6%	28	29.5%	
Fever	Yes	92	71.3%	27	79.4%	65	68.4%	0.224
	No	37	28.7%	7	20.6%	30	31.6%	
Dyspnea/SOB	Yes	24	18.6%	15	44.1%	9	9.5%	0.000
	No	105	81.4%	19	55.9%	86	90.5%	
Conjunctivitis	Yes	7	5.4%	4	11.8%	3	3.2%	0.057
	No	122	94.6%	30	88.2%	92	96.8%	
Missing School	Yes	12	9.3%	3	8.8%	9	9.5%	0.911
	No	117	90.7%	31	91.2%	86	90.5%	
Ear problems	Yes	1	0.8%	0	0.0%	1	1.1%	0.548
	No	128	99.2%	34	100.0%	94	98.9%	
Sinus problems	Yes	17	13.2%	4	11.8%	13	13.7%	0.776
	No	112	86.8%	30	88.2%	82	86.3%	
Vomiting	Yes	18	14.0%	5	14.7%	13	13.7%	0.883
	No	111	86.0%	29	85.3%	82	86.3%	
Diarrhoea	Yes	2	1.6%	2	5.9%	0	0.0%	0.017
	No	127	98.4%	32	94.1%	95	100.0%	

Table 6:Symptoms

Table 7: Significant Past Medical History

		Overall	Sample	Positive V	Positive Viral Test		Negative Viral Test	
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Prematurity	Yes	17	13.4%	4	12.1%	13	13.8%	0.804
	No	110	86.6%	29	87.9%	81	86.2%	
Oxygen dependency	Yes	2	1.6%	0	0.0%	2	2.1%	0.394
	No	127	98.4%	34	100.0%	93	97.9%	

		Overall	Sample	Positive V	Viral Test	Negative	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
NPA - type	None	95	73.6%	4	11.8%	91	95.8%	0.000
	Parainfluenz	5	3.9%	4	11.8%	1	1.1%	
	а							
		0	0.0%		0.0%	0	0.0%	
	RSV	27	20.9%	24	70.6%	3	3.2%	
	RSV-ROTA	1	0.8%	1	2.9%	0	0.0%	
	RSV+ Para	1	0.8%	1	2.9%	0	0.0%	
	influenza							
PPD	Yes	1	0.8%	0	0.0%	1	1.1%	0.548
	No	128	99.2%	34	100.0%	94	98.9%	
WBC	High	18	28.1%	4	20.0%	14	31.8%	0.167
	Low	11	17.2%	6	30.0%	5	11.4%	
	Normal	35	54.7%	10	50.0%	25	56.8%	
HGB	Low	30	38.5%	9	37.5%	21	38.9%	0.907
	Normal	48	61.5%	15	62.5%	33	61.1%	
Plts	High	17	21.3%	6	24.0%	11	20.0%	0.870
	Low	8	10.0%	2	8.0%	6	10.9%	
	Normal	55	68.8%	17	68.0%	38	69.1%	

Table 8:Investigations

Table 9:

NPA Type

	Positive V	Viral Test
	No	%
RSV	27	79.40%
Parainfluenza	5	14.70%
RSV-ROTA	1	2.90%
RSV+	1	2.90%
Parainfluenza		

		Overall	Sample	Positive V	Viral Test	Negative	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Oxygen	Yes	70	54.3%	28	82.4%	42	44.2%	0.000
	No	59	45.7%	6	17.6%	53	55.8%	
Aerosolized Salbutamol	Yes	94	72.9%	29	85.3%	65	68.4%	0.147
	No	33	25.6%	5	14.7%	28	29.5%	
	Not Known	2	1.6%	0	0.0%	2	2.1%	
Steroids	Yes	50	38.8%	20	58.8%	30	31.6%	0.017
	No	77	59.7%	14	41.2%	63	66.3%	
	Not Known	2	1.6%	0	0.0%	2	2.1%	
Ventilatory Assistance	Yes	18	14.0%	6	17.6%	12	12.6%	0.551
	No	109	84.5%	28	82.4%	81	85.3%	
	Not Known	2	1.6%	0	0.0%	2	2.1%	
Antibiotics	Yes	95	73.6%	22	64.7%	73	76.8%	0.168
	No	34	26.4%	12	35.3%	22	23.2%	
Singulair	Yes	22	17.1%	6	17.6%	16	16.8%	0.915
	No	107	82.9%	28	82.4%	79	83.2%	

Table 10:Treatment

Table 11:Patients' Referral

		Overall	Sample	Positive V	Viral Test	Negative '	Viral Test	р-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Referral to Respirology	Yes	6	4.7%	3	8.8%	3	3.2%	0.178
	No	123	95.3%	31	91.2%	92	96.8%	
Bronchoscopy	Yes	5	3.9%	1	2.9%	4	4.2%	0.742
	No	124	96.1%	33	97.1%	91	95.8%	
Outpatient FU	Yes	12	9.3%	11	32.4%	1	1.1%	0.000
	No	117	90.7%	23	67.6%	94	98.9%	

Table 12:Final Diagnosis

		Overall Sample		Positive Viral Test		Negative Viral Test		p-
		Count or Mean	% or SD	Count or Mean	% or SD	Count or Mean	% or SD	value
Chronic Lung Disease	Positive CLD	78	60.5%	20	58.8%	58	61.1%	0.820
	Negative CLD	51	39.5%	14	41.2%	37	38.9%	

REFERENCE:

 Liolios L, Jenney A, Spelman D, Kotsimbos T, Catton M, Wesselingh S. Comparison of a multiplex reverse transcription PCRenzyme hybridization assay with conventional viral culture immunofluorescence techniques for the detection of seven viral respiratory pathogens. J Clin Microbiol 2001; 39: 2779-83.

2. JevsnikM, UrsicT, ZigonN,LusaL, KrivecU, etal. (2012). Corona virus infections in hospitalized

Saleh Alharbi

pediatric patients with acute respiratory tract disease. BMC InfectDis 12:365.doi:10.1186/1471-2334-12365 PMID:23256846

- MurrayCJ, LopezAD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349:1436–1442.PMID:9164317
- Williams BG, Gouws E, Boschi-Pinto C, Bryce J, Dye C. Estimates of world-wide distribution of child deaths from acute respiratory infections. Lancet Infect Dis 2002; 2: 25-32
- Iwane MK, Edwards KM, Szilagyi PG, et al. Population-based surveillance for hospitalizations associated with a respiratory syncytial virus, influenza virus, and parainfluenza virüses among young children. Pediatrics 2004; 113: 1758-64.
- Massin MM, Montesanti J, Gerard P, Lepage P. Spectrum and frequency of illness presenting to a pediatric emergency department. Acta Clin Belg 2006; 61: 161-5
- Yeolekar LR, Damle RG, Kamat AN, Khude MR, Simha V, Pandit AN. Respiratory viruses in acute respiratory tract infections in Western India. Indian J Pediatr 2008; 75: 341-5.
- Allander T, Jartti T, Gupta S, et al. Human bocavirüs and acute wheezing in children. Clin Infect Dis 2007; 44: 904-10
- AllanderT, TammiMT, ErikssonM, BjerknerA, Tiveljung LindellA, etal. (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 102:12891–12896.PMID:16118271
- Moorman JE, Akinbami LJ, Bailey CM, et al. National surveillance of asthma: the United States, 2001-2010. Vital Health Stat 3. 2012; (35):1–67. [PubMed: 24252609]
- 11. O'Callaghan-Gordo C, Bassat Q, Diez-Padrisa N, Morais L, Machevo S, Nhampossa T, et al. Lower respiratory tract infections associated with rhinovirus during infancy and increased risk of wheezing during childhood. A cohort study. PLoS One 2013;8: e69370.
- Kennedy JL, Shaker M, McMeen V, Gern J, Carper H, Murphy D, et al. Comparison of viral load in individuals with and without asthma during infections with rhinovirus. Am J Respir Crit Care Med 2014;189:532-9.

- Leena Ravindra Yeolekar, Rekha Gangadhar Damle, Aarti Nilesh Kamat, Madhukar Ramchandra. Respiratory Viruses in Acute Respiratory Tract Infections in Western India. Indian J Pediatr 2008; 75 (4): 341-345]
- 14. Gooskens J, van der Ploeg V, Sukhai RN, Vossen A, Claas E, Kroes A. Clinical evaluation of viral acute respiratory tract infections in children presenting to the emergency department of a tertiary referral hospital in the Netherlands. BMC Pediatr 2014; 14: 297.
- 15. Akturk H, Sutcu M, Badur S, Hancerli Torun S, Citak A, Erol O et al. Evaluation of epidemiological and clinical features of influenza and other respiratory viruses. Türk Pediatri Arşivi. 2015;50(4):217-225
- 16. Eun Hwa Choi, Hoan Jong Lee, Sun Jung Kim, Byung Wook Eun, Nam Hee Kim,1 Jin A Lee, Jun Ho Lee, Eun Kyung Song, So Hee Kim1 Ji Yong Park, and Ji Yeon Sung. The Association of Newly Identified Respiratory Viruses with Lower Respiratory Tract Infections in Korean Children, 2000–2005. CID 2006:43 (1 September) – 585-592
- 17. Hacer Aktürk, Murat Sütçü, Selim Badur, Selda Hançerli Törün, Agop Çıtak, Oğuz Bülent Erol, Ayper Somer, and Nuran Salman. Evaluation of epidemiological and clinical features of influenza and other respiratory viruses. Turk Pediatri Ars. 2015 Dec; 50(4): 217–225.
- Lemke M, Hartert TV, Gebretsadik T, Carroll KN. Relationship of secondhand smoke and infant lower respiratory tract infection severity by familial atopy status. Ann Allergy Asthma Immunol. 2013 Jun;110(6):433-7.
- Wood, C.C. Butler, K. Hood, M.J. Kelly, T. Verheij, P. Little, A. Torres, F. Blasi, T. Schaberg, H. Goossens, J. Nuttall, S. Coenen. Antibiotic prescribing for adults with acute cough/lower respiratory tract infection: congruence with guidelines. European Respiratory Journal 2011 38: 112-118;
- 20. Michael Harris, Julia Clark, Nicky Coote, Penny Fletcher, Anthony Harnden, Michael McKean and Anne Thomson. Lower Respiratory Tract Infection in Children. British Thoracic Society (2011), Thorax Vol 66 Sup 2.

IAJPS 2019, 06 (03), 6710-6721

 Michelow IC1, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, Kauppila J, Leinonen M, McCracken GH. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Jr.Pediatrics. 2004 Apr;113(4):701-7.