CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF # PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.3724434 Available online at: http://www.iajps.com Research Article # ANALYSIS OF MATERNAL SERUM URIC ACID LEVELS AT DELIVERY AMONG GESTATIONAL HYPERTENSIVE WOMEN **Dr Iqra Nawaz¹, Dr Ayesha Riaz¹, Dr Qurat Ul Ain Akram²**¹Lahore General Hospital ²POF Hospital Wah Cantt, Rawalpindi **Article Received:** January 2020 **Accepted:** February 2020 **Published:** March 2020 #### Abstract: Aims and objectives: The basic aim of the study is to analyze the maternal serum uric acid levels at delivery among gestational hypertensive women and its effect on fetal growth. Material and methods: This cross sectional study was conducted in Lahore general hospital, Lahore during April 2019 to December 2019. The data were collected from 200 pregnant female patients with gestational age above 32 weeks. The selected participants were divided into 2 groups, one with GH and second group with NP. All the participants were age matched. GH is defined as denovo hypertension with systolic blood pressure (SBP) \geq 140 mmHg and diastolic blood pressure (DBP) \geq 90 mmHg after 20 weeks of gestation.PE is GH with proteinuria – 1+ on dipstick or \geq 300 mg/day or Pr:Cr ratio as \geq 3.0 mg/g. Results: The data was collected from 200 randomly selected participants. The mean age for NP were 23.2 \pm 2.9 and for GH 22.9 \pm 3.0. The mean age and gestational age among both groups were not statistically significant. SBP, DBP, and urinary proteins were significantly different in the both groups. The mean serum uric acid and creatinine levels were significantly elevated in GH (4.27 \pm 1.0 mg/dL; 0.66 \pm 0.19 mg/dL) and NP (4.25 \pm 0.8 mg/dL; 0.63 \pm 0.13 mg/dL).In NP group, 67% women had full-term normal vaginal delivery (FTNVD). Conclusion: It is concluded that Serum uric acid and creatinine are elevated in GH whereas no significant difference was observed between PE and NP. # **Corresponding author:** **Dr. Iqra Nawaz**, Lahore General Hospital Please cite this article in press Iqra Nawaz et al., Analysis Of Maternal Serum Uric Acid Levels At Delivery Among Gestational Hypertensive Women, Indo Am. J. P. Sci, 2020; 07(03). #### **INTRODUCTION:** Hypertensive disorders complicate ≈2% to 10% of pregnancies. Hypertensive disorders complicating pregnancy are the most common and serious medical disorder and constitute up to 2–10% of all pregnancies. Gestational hypertension (GH), preeclampsia (PE), and eclampsia are a part of a spectrum of hypertensive disorders that complicate pregnancy as specified by the National High Blood Pressure Education Program (NHBPEP) working group. Though studies have mentioned various parameters in etio-pathogenesis of hypertensive of pregnancy, still it remains obscure¹. Serum uric acid and creatinine levels are a part of work up for the pregnant women with hypertension. The elevated levels of these parameters were due to decreased urinary clearance secondary to reduced GFR and increased reabsorption². Serum uric acid is not only a marker of severity of disease but also contributes to the pathology of disorder³. During pregnancy, circulating uric acid levels are regulated by alterations in renal handling. Maternal serum uric acid levels decrease by 25–35% during the first trimester due to an increase in glomerular filtration rate and a decrease in reabsorption in the proximal tubule. There is a subsequent rise to prepregnancy levels near term, which is related to a decrease in uric acid clearance due to postsecretory reabsorption⁴. Hyperuricemia in pregnancy is associated with adverse fetal outcome and preeclampsia. Uric acid directly inhibits amino acid transfer in the placenta and suppresses fetal growth⁵. Elevated levels of uric acid may have a proliferative and proinflammatory effect on the small blood vessels of the placenta, resulting in small-for-gestational-age (SGA) fetuses⁶. Uric acid stimulates the production of vasoconstrictors and inflammatory agents, reduces nitric oxide production, and increases thromboxane generation in vascular smooth muscle cells⁷. Thus, hyperuricemia is strongly associated with endothelial cell dysfunction, and elevated serum uric acid levels usually precede hypertension. ### Aims and objectives The basic aim of the study is to analyze the maternal serum uric acid levels at delivery among gestational hypertensive women and its effect on fetal growth. #### **MATERIAL AND METHODS:** This cross-sectional study was conducted in Lahore general hospital, Lahore during April 2019 to December 2019. The data were collected from 200 pregnant female patients with gestational age above 32 weeks. The selected participants were divided into 2 groups, one with GH and second group with NP. All the participants were age matched.GH is defined as denovo hypertension with systolic blood pressure (SBP) ≥140 mmHg and diastolic blood pressure (DBP) ≥90 mmHg after 20 weeks of gestation.PE is GH with proteinuria – 1+ on dipstick or ≥300 mg/day or Pr:Cr ratio as ≥3.0 mg/g. 5 mL of blood sample was collected from all the participants by venous puncture, into properly labeled plain polystyrene tubes. For urine protein analysis, 10 mL mid-stream urine was collected. Blood samples were centrifuged at 10,000 rpm for 10 min and the serum was separated. Serum uric acid and creatinine were estimated immediately. Serum uric acid was measured by modified uricase method. The normal serum reference range for females was 2.6–6.0 mg%. Serum creatinine was estimated by modified kinetic Jaffes method. The data was collected and analyzed using SPSS (version 21.0). All the values were expressed in mean and standard deviation. # **RESULTS:** The data was collected from 200 randomly selected participants. The mean age for NP were 23.2 ± 2.9 and for GH 22.9 ± 3.0 . The mean age and gestational age among both groups were not statistically significant. SBP, DBP, and urinary proteins were significantly different in the both groups. The mean serum uric acid and creatinine levels were significantly elevated in GH $(4.27 \pm 1.0 \text{ mg/dL}; 0.66 \pm 0.19 \text{ mg/dL})$ and NP $(4.25 \pm 0.8 \text{ mg/dL}; 0.63 \pm 0.13 \text{ mg/dL})$.In NP group, 67% women had full-term normal vaginal delivery (FTNVD). The fetal birth weight was significantly low in GH $(2.31 \pm 0.5 \text{ kg})$ when compared with NP $(2.74 \pm 0.58 \text{ kg})(9)$ and PIH $(2.8 \pm 0.28 \text{ kg})$ groups. 29.9 0.412 - 0.672 Cutoff Sensitivity (%) Specificity (%) AUC(8) 95% CI GH Uric acid (mg%) ≤3.9 36.7 58.1 0.536 0.404–0.665 Table 01: Specificity and sensitivity of serum uric acid and creatinine in GH and PE #### **DISCUSSION:** Creatinine (mg%) Elevated uric acid levels were negatively correlated with fetal growth. However, the variations in uric acid levels were within the reference range measured in healthy human serum (0.12-0.39 mmol/l)8. Hyperuricemia is associated with components of metabolic syndrome. The difference in serum uric acid levels between patients with metabolic syndrome and controls can be as low as 0.03-0.06 mmol/l, and the average serum uric acid concentration of patients with metabolic syndrome is 0.35 mmol/l. These data indicate that the fluctuations in serum uric acid levels between the SGA (0.29 mmol/l) and the AGA (0.24 mmol/l) group in our study are similar to the difference between metabolic syndrome and normal controls, suggesting that this variation might be significant for fetal growth⁹. >0.6 70 Hypertensive disorders of pregnancy are GH and PE, increase obstetrics risk, such as abruption placenta, preterm labor, eclampsia, and HELLP syndrome. Renal dysfunction in these disorders is due to glomerular endothelial injury causing decrease in GFR. Various studies have mentioned elevated levels of renal markers, such as serum uric acid, creatinine, and urea in PE¹⁰. # **CONCLUSION:** It is concluded that Serum uric acid and creatinine are elevated in GH whereas no significant difference was observed between PE and NP. Serum uric acid had better specificity and sensitivity for GH and also correlated negatively with fetal birth weight. Serum uric acid and creatinine levels vary with gestational age. ## **REFERENCES** 1. Manjareeka M, Sitikantha N. Elevated levels of serum uric acid, creatinine or urea in preeclamptic women. Int J Med Sci Public Heal. 2013;2(1):43–47. Padma Y, Aparna VB, Kalpana B, Ritika V, Sudhakar PR. Renal markers in normal and hypertensive disorders of pregnanacy in Indian women: a pilot study. Int J ReprodContraceptObs Gynecol. 2013;2:514– 520. 0.544 - 3. Monteiro G, Subbalakshmi NK, Anupama N, Kini RD, Pai SR. A comparative study on renal function parameters and age in females with and without pre-eclampsia in a tertiary health care setup. Int J Biomed Adv Res. 2013;4(10):735–737 - 4. Taefi A, Jamal AS. The role of serum uric acid in preeclampsia. J FamReprod Heal. 2008;2(3):159–162. - 5. Manjareeka M, Sitikantha N. Elevated levels of serum uric acid, creatinine or urea in preeclamptic women. Int J Med Sci Public Heal. 2013;2(1):43–47. - 6. Barton JR, Sibai BM. Prediction and prevention of recurrent preeclampsia. *Obstetrics & Gynecology*. 2008;112(2):359–372 - 7. Essiben, F, Itembe, O, Foumane, P, Nguefack, MT, Eko, FE. Blood uric acid level as a marker of increased risk of eclampsia in severe pre-eclamptic patients: A cross-sectional study in two tertiary hospitals of Yaoundé, Cameroon. *Health Sci Dis.* 2016; **17**: 7–11. - 8. Tejal, P, Astha, D. Relationship of serum uric acid level to maternal and perinatal outcome in patients with hypertensive disorders of pregnancy. *Gujarat Med J.* 2014; **69**: 45–47. - 9. Rajalaxmi, K, Radhakrishna, N, Manjula, S. Serum uric acid level in preeclampsia and its correlation to maternal and fetal outcome. *Int J Biomed Res.* 2014; **5**: 22–24. - Powers RW, Bodnar LM, Ness RB, Cooper KM, Gallaher MJ, Frank MP, et al. Uric acid concentrations in early pregancy among preeclamptic women with gestational hyperuricemia at delivery. Am J Obstet Gynecol. 2006;194:160.e1–160.e8.