

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.3550879

Available online at: <u>http://www.iajps.com</u>

Research Article

ANALYSIS OF GESTATIONAL WEIGHT GAIN AMONG WOMEN WITH GESTATIONAL DIABETES MELLITUS IN PAKISTAN

Amir Shabeer¹, Uzma Mubarik¹, Ussama Razzaq Cheema²

¹Bahawalpur Victoria Hospital

²Rural Health Centre Mubarakpur, District Bahawalpur

Abstract:

Objectives: The main objective of the study is to analyze the gestational weight gain among women with gestational diabetes mellitus in local population of Pakistan. **Methodology:** This cross sectional study was conducted in Bahawalpur Victoria Hospital, Bahawalpur during 2018 to 2019. The data was collected from 100 female patients according to the ethical committee of hospital during the time period of December 2016 to April 2017. **Results:** According to the pre-pregnancy BMI, 96 women (11.5%) were underweight, 558 (67.1%) were of normal weight, 134 (16.1%) were overweight and 44 (5.3%) were obese (Table 1). The level of glycated hemoglobin was significantly higher in the overweight and obese groups than in normal weight and underweight groups (P < 0.05). **Conclusion:** It is reasoned that high pre-pregnancy BMI and unnecessary GWG are related with higher frequencies of LGA, and in addition other unfavorable results in Chinese ladies with GDM.

Corresponding author: Amir Shabeer, *Bahawalpur Victoria Hospital*

Please cite t h i s article in press Amir Shabeer et al., Analysis Of Gestational Weight Gain Among Women With Gestational Diabetes Mellitus In Pakistan., Indo Am. J. P. Sci, 2019; 06(11).

INTRODUCTION:

Obesity has been designated as one of the most important global health threats worldwide, and its prevalence has been increasing among women of reproductive age¹. Pregnant ladies constitute a critical subpopulation with a hoisted danger of obesity because of over the top weight pick up. It has been demonstrated that maternal obesity and inordinate gestational weight pick up (GWG) are related with unfriendly obstetric and neonatal results including unconstrained fetus removal, gestational diabetes mellitus (GDM), cesarean conveyance, preeclampsia, neonatal macrosomia, and agent and soporific entanglements².

To help ideal pregnancy results, the World Health Organization (WHO) prescribed that the Institute of Medicine (IOM) create rules for weight pick up amid pregnancy. In any case, the IOM suggestions on gestational weight pick up depend on prepregnancy BMI without mulling over various race/ethnicity. age. or existing pregnancy inconveniences³. Ladies with GDM are at expanded danger of maternal and fetal intricacies including preeclampsia, preterm birth, cesarean segment and conveyance of huge for gestational age (LGA) newborn children. As obesity and GDM are much of the time comorbid conditions, obesity and over the top gestational weight pick up may intensify these dangers in GDM. Since fat is an endocrine organ and collaborates with diabetes, it is conceivable that the expanded amassing of fat differentially affects perinatal results for ladies with GDM⁴.

Albeit a few past examinations have examined the influence of high pre-pregnancy BMI and over the top GWG on perinatal results, for example, cesarean conveyance, preeclampsia and macrosomia, few were directed in China, and generally among non-GDM ladies. There is no immediate proof on the relationship between maternal pre-pregnancy BMI or GWG and the perinatal results of GDM moms, and stays hazy whether the most recent 2009 IOM rules for pregnancy weight pick up are appropriate to GDM populace, given the conceivable compound impact of obesity and gestational diabetes⁵⁻⁶.

Objectives of the study

The main objective of the study is to analyze the gestational weight gain among women with gestational diabetes mellitus in local population of Pakistan.

MATERIAL AND METHODS:

This cross sectional study was conducted in Bahawalpur Victoria Hospital, Bahawalpur during 2018 to 2019. We designed a study to associate maternal BMI and GWG with pregnancy outcomes in local women of Pakistan with GDM and examine whether these narrower pregnancy weight gain recommendations are predictive of adverse perinatal outcomes in Pakistani population.

Statistical analysis

Student's t-test was performed to evaluate the differences in roughness between group P and S. Two-way ANOVA was performed to study the contributions. A chi-square test was used to examine the difference in the distribution of the fracture modes (SPSS 19.0 for Windows, SPSS Inc., USA).

RESULTS:

According to the pre-pregnancy BMI, 96 women (11.5%) were underweight, 558 (67.1%) were of normal weight, 134 (16.1%) were overweight and 44 (5.3%) were obese (Table 1). The level of glycated hemoglobin was significantly higher in the overweight and obese groups than in normal weight and underweight groups (P < 0.05). In addition, birth weight was significantly higher in overweight or obese women than in underweight women (P < 0.05). There were no significant differences between the four pre-pregnancy BMI categories in maternal age, parity, height and gestational weeks (Table 1).

Tables 2 show the effects of pre-pregnancy BMI and GWG on pregnancy outcomes, expressed as the odds of each outcome occurring relative to that in women of normal weight or adequate GWG, respectively.

Variables	Excessive GWG (N = 293)					
	N (%)	AOR (95% CI)	Р			
Cesarean section ^a	177 (60.4)	1.60 (1.15-2.23)	0.005			
PPH ^a	60 (20.5)	1.44 (0.94–2.19)	0.094			
Preterm delivery ^b	6 (2.0)	0.63 (0.23–1.73)	0.369			
PPROM ^b	51 (17.4)	1.01 (0.66–1.54)	0.965			
GHT ^c	11 (3.8)	1.23 (0.50–2.98)	0.655			
Macrosomia ^c	39 (13.3)	1.94 (1.11–3.38)	0.020			
SGA ^b	7 (2.4)	0.78 (0.29–2.08)	0.615			
LGA ^b	97 (33.1)	1.31 (0.92–1.85)	0.133			

Table 01: Gestational weight gains in pregnancy

CI, confidence interval; GWG, gestational weight gain; PPH, postpartum hemorrhage; PPROM, preterm premature rupture of membranes; GHT, gestational hypertension; SGA, small for gestational age; LGA, large for gestational age. AORs are presented relative to the adequate GWG group.

Table 02: Effects of pre-pregnancy body mass index on pregnancy outcomes

Variables	Over weight		obese		
	AOR (95% CI)	N (%)	N (%)	AOR (95% CI)	Р
Cesarean section ^a	41 (42.7)	0.165	282 (50.5)	86 (64.2)	1.95 (1.29–2.96)
PPH ^a	12 (12.5)	0.501	88 (15.8)	31 (23.1)	1.60 (0.99–2.59)
Preterm delivery ^b	3 (3.1)	0.937	19 (3.4)	2 (1.5)	0.39 (0.09–1.70)
PPROM ^b	21 (21.9)	0.153	89 (15.9)	23 (17.2)	1.05 (0.63–1.75)
GHT ^c	1 (1.0)	0.499	10 (1.8)	8 (6.0)	4.10 (1.56–10.81)
Macrosomia ^c	2 (2.1)	0.031	41 (7.3)	15 (11.2)	2.02 (1.05-3.88)
SGA ^b	3 (3.1)	0.967	17 (3.0)	3 (2.2)	0.59 (0.17–2.13)
LGA ^b	10 (10.4)	0.001	132 (23.7)	47 (35.1)	2.14 (1.40-3.26)

Discussion

Maternal, perinatal and neonatal complications are strongly associated with GDM. The frequency of GDM in China has expanded since 2000 and this has turned into a critical open issue⁷. A Chinese national review had detailed predominance of the IADPSG criteria-characterized GDM of 14.7% out of 2004– 2009. This occurrence of GDM is like different investigations in Asian populaces, yet higher than the rate of GDM in the United Kingdom (3.5%) and the United States (8.6%). Occurrence of GDM appears to rely upon variables, for example, ethnicity and geological areas. In 2007 through 2008, about 60% of conceptive age American ladies were accounted for to be overweight or corpulent, with the predominance of overweight or obesity announced at around 21.4% in our investigation. In spite of the fact that the occurrence of obesity is bring down in Chinese and Asian ladies contrasted and different ethnicities, past investigations have demonstrated that Asians have a significantly higher danger of GDM, even at a low BMI⁸.

Ladies with GDM are in danger of maternal and neonatal entanglements in pregnancy, and being overweight or fat with unreasonable gestational weight pick up seems to exacerbate this hazard. The principle discoveries of the present investigation are that, contrasted with ladies of ordinary weight, overweight and fat ladies with GDM had a higher frequency of cesarean segment, GHT, macrosomia and LGA, while underweight ladies had a lower occurrence of both macrosomia and LGA. Besides, contrasted and GWG inside the IOM proposals, over the top GWG expanded the frequency of cesarean area and newborn child macrosomia, while deficient GWG diminished the occurrence of LGA⁹. Albeit most examinations tending to the impacts of maternal BMI on unfriendly results incorporate ladies with GDM, a couple have detailed these relationship in overweight or hefty ladies with typical glucose resilience. Sparse information exist that exhibit the collaboration between high maternal pre-pregnancy BMI, gestational weight pick up and perinatal results in ladies with GDM¹⁰.

CONCLUSION:

It is reasoned that high pre-pregnancy BMI and unnecessary GWG are related with higher frequencies of LGA, and in addition other unfavorable results in Chinese ladies with GDM.

REFERENCES:

- 1. Haugen, M. et al. Associations of prepregnancy body mass index and gestational weight gain with pregnancy outcome and postpartum weight retention: a prospective observational cohort study. BMC pregnancy and childbirth 14, 201.
- Gaillard, R. et al. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Acta Obstetricia Et Gynecologica Scandinavica 92, 14–15 (2013).
- Yang, J., Cummings, E. A., O'Connell, C. & Jangaard, K. Fetal and neonatal outcomes of diabetic pregnancies. Obstetrics and Gynecology 108, 644–650.
- 4. Owens, L. A. *et al.* ATLANTIC DIP: the impact of obesity on pregnancy outcome in glucose-tolerant women. *Diabetes care* **33**, 577–579
- 5. Catalano, P. M. *et al.* The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. *Diabetes care* **35**, 780–786
- Zhang, F. et al. Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008. Diabetic medicine: a journal of the British Diabetic Association 28, 652–657
- 7. Wei, Y. M. & Yang, H. X. [Comparison of the diagnostic criteria for gestational diabetes mellitus in China]. *Zhonghua fu chan ke za zhi*46, 578–581 (2011).
- 8. Kim, S. Y. *et al.* Racial/ethnic differences in the percentage of gestational diabetes mellitus cases attributable to overweight and obesity, Florida, 2004–2007. *Preventing chronic disease* **9**, E88 (2012)
- DeSisto, C. L., Kim, S. Y. & Sharma, A. J. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007–2010. Preventing chronic disease
- Fisher, S. C., Kim, S. Y., Sharma, A. J., Rochat, R. & Morrow, B. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003– 2009. *Preventive medicine* 56, 372–378.