
IAJPS 2019, 06 (10), 12545-12551                        Reena S R et al                     ISSN 2349-7750 
 

 
 

w w w . i a j p s . c o m  
 

Page 12545 

 
        CODEN [USA]: IAJPBB                        ISSN: 2349-7750 

 
  INDO AMERICAN JOURNAL OF 

 PHARMACEUTICAL SCIENCES 

      http://doi.org/10.5281/zenodo.3473306                              

Available online at: http://www.iajps.com                                    Review Article 

PHARMACOPHORE AND QSAR STUDY: A REVIEW 
Reena S R1*, 2Dr .Prasobh G.R., 3Dr .Sandhya S.M, 4Sheeja Rekha A G , 5Athira S 

1Sreekrishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram Dist, 

Kerala. 

Article Received: August 2019      Accepted: September 2019         Published: October 2019 

Abstract: 

A pharmacophore is an abstract description of molecular features which are necessary for molecular recognition of 

a ligand by a biological macromolecule. The IUPAC defines a pharmacophore to be "an ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological 

target and to trigger (or block) its biological response".A pharmacophore model explains how structurally diverse 

ligands can bind to a common receptor site. Furthermore pharmacophore models can be used to identify through 

denovo design or virtual screening novel ligands that will bind to the same receptor. The process for developing a 

pharmacophore model generally involves many steps.Pharmacophore modeling is a successful yet very diverse 

subfield of computer-aided drug design. The concept of the pharmacophore has been widely applied to the rational 
design of novel drugs.  

Quantitative structure–activity relationship models (QSAR models) are regression or classification models used in 

the chemical and biological sciences and engineering.  
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INTRODUCTION: 

Pharmacophore approaches are successful subfields 

of computer-aided drug design (CADD) which have 

become one of the major tools in hit identification, 

lead optimization, and rational design of novel drugs. 
A pharmacophore model is the ensemble of common 

steric and electronic features that are necessary to 

ensure the optimal molecular interactions with a 

specific biological target and to trigger (or block) its 

biological response. It can be used to represent and 

characterize molecules on schematic 2D or 3D level 

by identifying the essential properties of molecular 

recognition. Every type of atom or group in a 

compound can be reduced to a pharmacophore 

feature (or pharmacophore fingerprints). These 

molecular patterns would be labeled by several 

chemical properties, such as hydrogen bond donors 
or acceptors, aromatic, cationic, etc, which can be 

used to analyze the similarity among a library of 

small molecules and identify the key contributing 

features to the biological function [1,2]. 

 

TYPE OF PHARMACOMODELING: 

 

 
 

 Ligand-based pharmacophore modeling: 

In the absence of the macromolecular target structure, 

ligand-based pharmacophore modeling is an essential 

stratege for drug discovery. In this method, the 

common chemical characteristics from 3D structures 
of multiple known ligands are extracted through 

ligand alignment, which would represent the essential 

interactions between ligand and potential 

macromolecular target [4]. 

 

 Structure-based pharmacophore modeling: 

The structure-based pharmacophore modeling 

generates chemical features of the active site and the 

sterical relationships from 3D structure of 

macromolecular target or macromolecule-ligand 

complex. It probes the possible interaction sites 

between the macromolecular target and the 
ligands.pharmacophore modeling services from a 

basic concept to a well-established CADD pipeline 

with applications including virtual screening, 

ADME-tox prediction, lead optimization, drug target 

identification and so on [3,5,6]. 

 

FEATURES: 

Typical Pharacophore features include hydrophobic 
centroids , aromatic rings , hydrogen bond acceptors 

or donors, cations, and  anions. These 

pharmacophoric points may be located on the ligand 

itself or may be projected points presumed to be 

located in the receptor. 

 

The features need to match different chemical groups 

with similar properties, in order to identify novel 

ligands. Ligand-receptor interactions are typically 

“polar positive”, “polar negative” or “hydrophobic”. 

A well-defined pharmacophore model includes both 
hydrophobic volumes and hydrogen bond vectors 

[7,8,9] 

 

https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Cation
https://en.wikipedia.org/wiki/Anion
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(An example of a pharmacophore model of 

the benzodiazepine binding site on the GABAA 

receptor. White sticks represent the carbon atoms of 

the benzodiazepine diazepam, while green represents 
carbon atoms of the non benzodiazepine CGS-9896. 

Red and blue sticks are oxygen and nitrogen atoms 

that are present in both structures. The red spheres 

labeled H1 and H2/A3 are, respectively, hydrogen 

bond donating and accepting sites in the receptor, 

while L1, L2, and L3 denote lipophilic binding site) 

 

MODEL AND DEVELOPMENT OF 

PHARMACOPHORE: 

The process for developing a pharmacophore model 

generally involves the following steps: 

1. Select a training set of ligands – Choose a 
structurally diverse set of molecules that will be 

used for developing the pharmacophore model. 

As a pharmacophore model should be able to 

discriminate between molecules with and 

without bioactivity, the set of molecules should 

include both active and inactive compounds. 

2. Conformational analysis – Generate a set of 

low energy conformations that is likely to 

contain the bioactive conformation for each of 

the selected molecules. 

3. Molecular superimposition – Superimpose 
("fit") all combinations of the low-energy 

conformations of the molecules. Similar 

(bioisosteric) functional groups common to all 

molecules in the set might be fitted (e.g., phenyl 

rings or carboxylic acid groups). The set of 

conformations (one conformation from each 

active molecule) that results in the best fit is 

presumed to be the active conformation. 

4. Abstraction – Transform the superimposed 

molecules into an abstract representation. For 

example, superimposed phenyl rings might be 

referred to more conceptually as an 'aromatic 
ring' pharmacophore element. Likewise, hydroxy 

groups could be designated as a 'hydrogen-

bond donor/acceptor' pharmacophore element. 

5. Validation – A pharmacophore model is 

a hypothesis accounting for the observed 

biological activities of a set of molecules that 

bind to a common biological target. The model is 

only valid insofar as it is able to account for 

differences in biological activity of a range of 

molecules(10,11). 
6. As the biological activities of new molecules 

become available, the pharmacophore model can 

be updated to further refine it. 

 

STEPS IN IDENTIFYING A 

PHARMACOPHORE: 

In general, all the algorithms for pharmacophore 

identification utilize the following six steps: 

1) Input 

2) Structure Representation 

3) Pattern Identification 

4) Scoring 
5) Feature extraction 

 

QSAR STUDY: 
In QSAR modeling, the predictors consist of physico-

chemical properties or theoretical molecular 

descriptors of chemicals; the QSAR response-

variable could be a biological activity of the 

chemicals. QSAR models first summarize a supposed 

relationship between chemical structures and 

biological activity in a data-set of chemicals. Second, 

QSAR models predict the activities of new 
chemicals. 

 

Related terms include quantitative structure–property 

relationships (QSPR) when a chemical property is 

modeled as the response variable."Different 

properties or behaviors of chemical molecules have 

been investigated in the field of QSPR. Some 

examples are quantitative structure–reactivity 

relationships (QSRRs), quantitative structure–

chromatography relationships (QSCRs) and, 

quantitative structure–toxicity relationships (QSTRs), 

quantitative structure–electrochemistry relationships 
(QSERs), and quantitative structure–biodegradability 

relationships (QSBRs)." 

 

As an example, biological activity can be expressed 

quantitatively as the concentration of a substance 

required to give a certain biological response. 

https://en.wikipedia.org/wiki/Benzodiazepine
https://en.wikipedia.org/wiki/GABAA_receptor
https://en.wikipedia.org/wiki/GABAA_receptor
https://en.wikipedia.org/wiki/Diazepam
https://en.wikipedia.org/wiki/CGS-9896
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Lipophilicity
https://en.wikipedia.org/wiki/Bioisostere
https://en.wikipedia.org/wiki/Hydrogen-bond
https://en.wikipedia.org/wiki/Hydrogen-bond
https://en.wikipedia.org/wiki/Biological_target
https://en.wikipedia.org/wiki/Biological_activity
https://en.wikipedia.org/wiki/Chemical_structure
https://en.wikipedia.org/wiki/Biological_activity
https://en.wikipedia.org/wiki/Predictive_inference
https://en.wikipedia.org/wiki/File:Bzr_pm.png
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Additionally, when physicochemical properties or 

structures are expressed by numbers, one can find a 

mathematical relationship, or quantitative structure-

activity relationship, between the two. The 

mathematical expression, if carefully validated can 
then be used to predict the modeled response of other 

chemical structures [12,13,14]. 

 

ESSENTIAL STEPS IN QSAR STUDIES: 

Principal steps of QSAR/QSPR including  

(i) Selection of Data set and extraction of 

structural/empirical descriptors 

(ii) variable selection, 

(iii) model construction and 

(iv) validation evaluation. 

 

Types: 

1)Fragment based (group contribution): 

Analogously, the "partition coefficient"—a 

measurement of differential solubility and itself a 

component of QSAR predictions—can be predicted 

either by atomic methods (known as "XLogP" or 

"ALogP") or by chemical fragment methods (known 

as "CLogP" and other variations). It has been shown 

that the logP of compound can be determined by the 

sum of its fragments; fragment-based methods are 

generally accepted as better predictors than atomic-

based methods. Fragmentary values have been 
determined statistically, based on empirical data for 

known logP values. This method gives mixed results 

and is generally not trusted to have accuracy of more 

than ±0.1 units. 

 

Group or Fragment based QSAR is also known as 

GQSAR. GQSAR allows flexibility to study various 

molecular fragments of interest in relation to the 

variation in biological response. The molecular 

fragments could be substituents at various 

substitution sites in congeneric set of molecules or 

could be on the basis of pre-defined chemical rules in 
case of non-congeneric sets. GQSAR also considers 

cross-terms fragment descriptors, which could be 

helpful in identification of key fragment interactions 

in determining variation of activity. Lead discovery 

using Fragnomics is an emerging paradigm. In this 

context FB-QSAR proves to be a promising strategy 

for fragment library design and in fragment-to-lead 

identification endeavours. 

 

An advanced approach on fragment or group-based 

QSAR based on the concept of pharmacophore-
similarity is developed. This method, 

pharmacophore-similarity-based QSAR (PS-QSAR) 

uses topological pharmacophoric descriptors to 

develop QSAR models. This activity prediction may 

assist the contribution of certain pharmacophore 

features encoded by respective fragments toward 

activity improvement and/or detrimental effects 

[15,16]. 

 

2)3D-QSAR 
The acronym 3D-QSAR or 3-D QSAR refers to the 

application of force field calculations requiring three-

dimensional structures of a given set of small 

molecules with known activities (training set). The 

training set needs to be superimposed (aligned) by 

either experimental data (e.g. based on ligand-protein 

crystallography) or molecule superimposition 

software. It uses computed potentials, e.g. the 

Lennard-Jones potential, rather than experimental 

constants and is concerned with the overall molecule 

rather than a single substituent. The first 3-D QSAR 

was named Comparative Molecular Field Analysis 
(CoMFA) by Cramer et al. It examined the steric 

fields (shape of the molecule) and the electrostatic 

fields which were correlated by means of partial least 

squares regression (PLS). 

 

The created data space is then usually reduced by a 

following feature extraction (see also dimensionality 

reduction). The following learning method can be 

any of the already mentioned machine learning 

methods, e.g. support vector machines. An alternative 

approach uses multiple-instance learning by encoding 
molecules as sets of data instances, each of which 

represents a possible molecular conformation. A label 

or response is assigned to each set corresponding to 

the activity of the molecule, which is assumed to be 

determined by at least one instance in the set (i.e. 

some conformation of the molecule) [17,18]. 

 

On June 18, 2011 the Comparative Molecular Field 

Analysis (CoMFA) patent has dropped any restriction 

on the use of GRID and partial least-squares (PLS) 

technologies. 

 

3) Chemical descriptor based 

In this approach, descriptors quantifying various 

electronic, geometric, or steric properties of a 

molecule are computed and used to develop a QSAR. 

This approach is different from the fragment (or 

group contribution) approach in that the descriptors 

are computed for the system as whole rather than 

from the properties of individual fragments. This 

approach is different from the 3D-QSAR approach in 

that the descriptors are computed from scalar 

quantities (e.g., energies, geometric parameters) 
rather than from 3DAn example of this approach is 

the QSARs developed for olefin polymerization by 

half sandwich compounds 

 

Evaluation of the quality of QSAR models: 

https://en.wikipedia.org/wiki/Group_contribution_method
https://en.wikipedia.org/wiki/Partition_coefficient
https://en.wikipedia.org/wiki/Force_field_(chemistry)
https://en.wikipedia.org/wiki/Crystallography
https://en.wikipedia.org/wiki/Superimposition
https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Multiple-instance_learning
https://en.wikipedia.org/wiki/Half_sandwich_compound
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QSAR modeling produces predictive models derived 

from application of statistical tools correlating 

biological activity (including desirable therapeutic 

effect and undesirable side effects) or physico-

chemical properties in QSPR models of chemicals 
(drugs/toxicants/environmental pollutants) with 

descriptors representative of molecular structure or 

properties. QSARs are being applied in many 

disciplines, for example: risk assessment, toxicity 

prediction, and regulatory decisions in addition to 

drug discovery and lead optimization. Obtaining a 

good quality QSAR model depends on many factors, 

such as the quality of input data, the choice of 

descriptors and statistical methods for modeling and 

for validation. Any QSAR modeling should 

ultimately lead to statistically robust and predictive 

models capable of making accurate and reliable 
predictions of the modeled response of new 

compounds. 

For validation of QSAR models, usually various 

strategies are adopted: 

 

1. Internal validation or cross-validation (actually, 

while extracting data, cross validation is a 

measure of model robustness, the more a model 

is robust (higher q2) the less data extraction 

perturb the original model); 

2. external validation by splitting the available data 
set into training set for model development and 

prediction set for model predictivity check; 

3. blind external validation by application of model 

on new external data and 

4. data randomization or Y-scrambling for 

verifying the absence of chance correlation 

between the response and the modeling 

descriptors [19]. 

 

The success of any QSAR model depends on 

accuracy of the input data, selection of appropriate 

descriptors and statistical tools, and most importantly 
validation of the developed model. Validation is the 

process by which the reliability and relevance of a 

procedure are established for a specific purpose; for 

QSAR models validation must be mainly for 

robustness, prediction performances and applicability 

domain (AD) of the models [20,21,22]. 

 

Some validation methodologies can be problematic. 

For example, leave one-out cross-validation generally 

leads to an overestimation of predictive capacity. 

Even with external validation, it is difficult to 
determine whether the selection of training and test 

sets was manipulated to maximize the predictive 

capacity of the model being published. 

Different aspects of validation of QSAR models that 

need attention include methods of selection of 

training set compounds, setting training set size and 

impact of variable selection for training set models 

for determining the quality of prediction. 

Development of novel validation parameters for 

judging quality of QSAR models is also important 
[23,24,25]. 

 

APPLICATION: 

Chemical: 

One of the first historical QSAR applications was to 

predict boiling points.  

 

It is well known for instance that within a particular 

family of chemical compounds, especially of organic 

chemistry, that there are strong correlations between 

structure and observed properties. A simple example 

is the relationship between the number of carbons in 
alkanes and their boiling points. There is a clear trend 

in the increase of boiling point with an increase in the 

number carbons, and this serves as a means for 

predicting the boiling points of higher alkanes. 

 

A still very interesting application is the Hammett 

equation, Taft equation and pKa prediction methods 

[25,26]. 

 

Biological: 

The biological activity of molecules is usually 
measured in assays to establish the level of inhibition 

of particular signal transduction or metabolic 

pathways. Drug discovery often involves the use of 

QSAR to identify chemical structures that could have 

good inhibitory effects on specific targets and have 

low toxicity (non-specific activity). Of special 

interest is the prediction of partition coefficient log P, 

which is an important measure used in identifying 

"druglikeness" according to Lipinski's Rule of Five. 

 

While many quantitative structure activity 

relationship analyses involve the interactions of a 
family of molecules with an enzyme or receptor 

binding site, QSAR can also be used to study the 

interactions between the structural domains of 

proteins. Protein-protein interactions can be 

quantitatively analyzed for structural variations 

resulted from site-directed mutagenesis [27,28,29]. 

 

It is part of the machine learning method to reduce 

the risk for a SAR paradox, especially taking into 

account that only a finite amount of data is available. 

In general, all QSAR problems can be divided into 
coding and learning [30,31,35]. 
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