

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.3401458

Available online at: <u>http://www.iajps.com</u>

Research Article

ANALYSIS OF INTRAVENOUS AND SUBCUTANEOUS MONOCLONAL ANTIBODIES IN THE TREATMENT OF ASTHMA

¹Muhammed Ameer Hamzah, ²Anam Sohail, ³Faisal Shahbaz

¹Avicenna Teaching hospital, Lahore; ²Hameed Latif hospital, Lahore;

³Tehsil Head Quarter Civil Hospital Daska, Sialkot.

Article Received: July 2019	Accepted: August 2019	Published: September 2019
Abstract:		
		etiology, including allergic asthma, which
is characterized by eosinophilic airway		
		he use of intravenous and subcutaneous
monoclonal antibodies in the treatmen	5	
		hospital, Lahore during January 2019 to
		symptomatic despite treatment with ICSs
0 1 1		ar; positive immediate responses on skin
prick testing to at least 1 common aller	0	
		RQ. At Week 24, there was a statistically
	SGRQ score for mepolizumab comp	pared with placebo: -5.8 (95% CI: -10.6,-
<i>1.0; P</i> =0.019).		
<i>Conclusion:</i> It is concluded that ome experience poor disease control or exa		atients with severe allergic asthma who
Corresponding author:	certations despite recommended ther	тиру.

Corresponding author:

Muhammed Ameer Hamzah,

Avicenna Teaching hospital, Lahore.

Please cite this article in press Muhammed Ameer Hamzah et al., Analysis Of Intravenous And Subcutaneous Monoclonal Antibodies In The Treatment Of Asthma., Indo Am. J. P. Sci, 2019; 06[09].

INTRODUCTION:

IgE plays a central role in the pathogenesis of allergic diseases. After sensitization, atopic patients respond to allergen exposure through a number of IgE-dependent mechanisms. By forming complexes with free IgE, mAbs against IgE block the interaction between IgE and mast cells and basophils. Thus, the use of anti-IgE mAbs is considered to be a promising approach for the treatment of allergic conditions such as asthma¹.

Asthma is an inflammatory chronic disease of multifactorial aetiology, including allergic asthma, which is characterized by eosinophilic airway inflammation, often sustained by allergic sensitization. Asthma is typically associated with bronchial hyperresponsiveness to direct and indirect triggers. Severe asthma is defined as asthma that requires high-dose inhaled corticosteroids (ICS) plus a second controller (usually a long-acting β_2 agonist [LABA]) and/or systemic corticosteroids for adequate control, or which is uncontrolled despite this high-intensity treatment. An estimated 5–10% of all patients with asthma are believed to have severe refractory asthma².

For patients with severe uncontrolled asthma, four monoclonal antibodies (mAbs) against immunoglobulin E (IgE) or interleukin (IL)-5 are available for clinical use by either subcutaneous (SC) or intravenous (IV) administration as an add-on to ICS plus LABA therapy. The anti-IgE antibody omalizumab has been available for SC use in the USA since 2003 and has also been approved in Europe since 2009. The anti-IL-5 antibodies mepolizumab and benralizumab for SC administration and reslizumab for IV administration were approved in 2015, 2017 and 2016, respectively, in both the USA and Europe³.

According to the Global Initiative for Asthma (GINA) 2017 guidelines, add-on therapy with omalizumab should be considered in patients aged ≥ 6 years with severe allergic asthma, while mepolizumab and reslizumab may be beneficial in patients with severe eosinophilic asthma aged ≥ 12 years. However, it is important to note that reslizumab has only been approved for adults (≥ 18 years)⁴.

mAbs are made of two identical heavy and light chains held together by disulphide bonds at the hinge region to form a Y-shaped structure. They were first created as mouse mAbs using hybridoma technology, but to minimise the immunogenic mouse components, murine mAbs were replaced by chimeric, humanised and then fully human mAbs. The pharmacokinetics (PK) of mAbs is characterised by low distribution to the extravascular compartment, because of their large molecular size and long elimination half-life ($t_{1/2}$), which depends on slow intracellular catabolism, with no urinary excretion⁵.

OBJECTIVES OF THE STUDY:

The main objective of the study is to analyze the use of intravenous and subcutaneous monoclonal antibodies in the treatment of asthma.

METHODOLOGY OF THE STUDY:

This study was conducted in Avicenna Teaching hospital, Lahore during January 2019 to July 2019. Male or female allergic asthmatics aged 12 to 75 years who were symptomatic despite treatment with ICSs were eligible if they met the following criteria: duration of asthma, ≥ 1 year; positive immediate responses on skin prick testing to at least 1 common allergen. This was a double-blinded, placebocontrolled, multicenter, parallel-group trial. On entry into the study, each patient was switched from his or her currently prescribed ICS to an equivalent dose of BDP. At the end of the second week of the 4- to 6week run-in period, the dose of BDP was adjusted upward or downward to maintain previous asthma control. The patients were monitored to ensure both the presence of asthma symptoms at levels acceptable to the patients and investigators and patient safety. Serum samples were taken at baseline and before dosing at weeks 16 and 24 to determine IgE concentrations. In omalizumabtreated subjects, serum IgE comprised free IgE and IgE bound to omalizumab.

Statistical analysis: The data was collected and analyzed using SPSS version 21.0. All the values were expressed in mean and standard deviation.

RESULTS:

The level of confidence interval is 90 and 95 in this table for the significant value. Additionally, health-related quality of life was measured using SGRQ. At Week 24, there was a statistically significant improvement in the mean SGRQ score for mepolizumab compared with placebo: -5.8 (95% CI: -10.6,-1.0; P=0.019). At Week 2, the proportion of subjects with a clinically meaningful decrease in SGRQ score (defined as a decrease of at least 4 units from baseline) was greater for mepolizumab (58%, 40/69) compared with placebo (41%, 27/66).

Table 01: Results of the primary and second	dary endpoints in the Intent to tre	at population	
	Number (%) of Subjects		
	Mepolizumab (100 mg SC)	Placebo	
	N= 69		
	v Endpoint:		
	om Baseline at Weeks 20-24 (%)	
N			
90% - 100%			
75% - <90%	12 (17%)	5 (8%)	
50% - <75%	9 (13%)	10 (15%)	
>0% - <50%	7 (10%)	7(11%)	
No decrease in OCS/lack of asthma control/ withdrawal from treatment	25 (36%)	37 (56%)	
Odds ratio (95% CI)	2.39 (1.25, 4.56)	_	
p-value	0.008		
1	y Endpoints:		
	he daily OCS dose		
At least 50% reduction in daily OCS dose from	le daily OCS dose		
baseline, n (%)			
baseline, if (70)	37 (54%)	22 (33%)	
Odds ratio (95% CI)	2.26 (1.10, 4.65)	22 (3370)	
p-value	0.027	-	
		-	
Reduction to ≤ 5 mg/day in daily OCS dose, n (%)	37 (54%)	21 (32%)	
Odds ratio (95% CI)	2.45 (1.12, 5.37)	-	
p-value	0.025	-	
Reduction to 0 mg/day in daily OCS dose, n (%)	10 (14%)	5 (8%)	
Odds ratio (95% CI)	1.67 (0.49, 5.75)	-	
p-value	0.414	-	
Median Percentage Rec	duction in Daily OCS Dose		
Median % reduction from baseline (95% CI)	50.0 (20.0, 75.0)	0.0 (-20.0, 33.3)	
Median difference (95% CI)	-30.0 (-66.7, 0.0)	1	
p-value	0.007		
1		1	

Table 01: Results of the primary and secondary endpoints in the Intent to treat population

OCS: prednisone/prednisolone

DISCUSSION:

The availability of biological agents has changed the treatment strategies for severe asthma. Initially, the availability of omalizumab changed the treatment of asthma related to IgE-mediated allergic pathogenesis⁶, and more recently, the availability of drugs targeting IL-5, which is a fundamental factor in the differentiation, activation and survival of eosinophils, changed the treatment strategy for the eosinophilic phenotype⁷. The therapeutic effect of mepolizumab, benralizumab and reslizumab is related to their capacity to bind with high affinity to IL-5 (dissociation constants in vitro of 100 and 81 pmol/L, respectively) and thus to block the interaction between IL-5 and its receptor on the surface of eosinophils⁸.

Mepolizumab is an IgG1 kappa mAb. In patients with asthma and blood eosinophil counts > 300 cells/µL,

dose- and time-dependent decreases in blood eosinophil counts were observed with IV mepolizumab 75 mg and SC mepolizumab 125 or 250 mg administration. However, authors concluded that the route of administration did not affect the drug exposure-response relationship. Furthermore, given that the reduction in blood eosinophils was evident as soon as three days from administration of the drug, whether SC or IV, there appears to be little significant difference in the PK-pharmacodynamics profile between the two routes of administration⁹.

The biological effects of SC mepolizumab have translated into clinical therapeutic efficacy. SC mepolizumab was associated with a significant corticosteroid-sparing effect in patients with severe eosinophilic asthma who required daily oral corticosteroids for asthma control in the SIRIUS study 10 .

CONCLUSION:

It is concluded that omalizumab is effective and safe in patients with severe allergic asthma who experience poor disease control or exacerbations despite recommended therapy.

REFERENCES:

- 1. Casale TB, Bernstein IL, Busse WW, LaForce CF, Tinkelman DG, Stoltz RR, et al. Use of an anti-IgE humanized monoclonal antibody in ragweedinduced allergic rhinitis. JAllergy Clin Immunol 1997;100:110-21.
- MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, Mckenzie-White J, et al. Down-regulation of FceRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 1997;158:1438-45.
- 3. National Asthma Education and Prevention Program. Expert Panel Report 2. Guidelines for the diagnosis and management of asthma [publication no. 97-4051]. Bethesda (MD): United States Department of Health and Human Services, Public Health Service, National Institutes of Health, National Heart, Lung, and Blood Institute; 1997.
- 4. Hoskins G, McCowan C, Neville RG, Thomas GE, Smith B, Silverman S. Risk factors and costs associated with an asthma attack. Thorax 2000;55:19-24.

- Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med 1999;341:1966-73.
- 6. Fox JA, Reitz B, Hagler K, Hsei V, Keller G, Ryan A, et al. Pharmacokinetics and clearance mechanisms of anti-IgE: IgE monoclonal and polyclonal complexes [abstract no. 2015]. Pharm Res 1997;14:S217.
- 7. Shields RL, Whether WR, Zioncheck K, O'Connell L, Fendly B, Presta LG, et al. Inhibition of allergic reactions with antibodies to IgE. Int Arch Allergy Immunol 1995;107:308-12.
- Coyle AJ, Wagner K, Bertrand C, Tsuyuki S, Bews J, Heusser C. Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a nonanaphylactogenic anti-IgE antibody. J Exp Med 1996;183:1303-10.
- 9. Silkoff PE, Milgrom H, Tran Z, Romero F, Townley R, Gupta N, et al. Exhaled nitric oxide (ENO) and anti-inflammatory effects of a recombinant humanized monoclonal antibody to IgE (rhuMAb-E25) in pediatric asthma. Chest 2000;118(Suppl):101S.
- 10. Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91(4):635– 646. doi: 10.1038/clpt.2011.328.