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Abstract: 
Recent investigations demonstrated that chronic variable stressors exhibit more severe effect on the endocrine and immune 
systems of the body compared the repeating stressors. During adolescent period of life lymphoid organs undergo fast 
developmental changes which may overlap with stress-induced immunomodulation. The influence of different chronically applied 
stressors on the lymphoid organs during various phases of periadolescence   requires further investigation. 
The objective of this research is to evaluate immunomodulatory effect of variable vs. repeating stressors on the morphology of 

the lymphoid organs in periadolescent experimental animals of different age. 
Repeating or variable stressors were applied for 9 days continuously to the infant and early pubertal rats. Central (thymus) and 
peripheral (spleen) lymphoid organs were sampled and evaluated using morphometry of the immunologically stained histological 
sections. 
Chronic variable stressors exposure showed more significant immunosuppressive effect in the thymus and spleen of the infant 
rats compared to the early pubertal ones, as demonstrated by more significant decrease of the volume density of different 
populations of immunocytes in the thymus and the spleen, and an increase of the density of caspase-3-positive cells in the spleen. 
Comparative evaluation of the repeating stressor exposure revealed significant reduction of the volume density of the CD20+ 

lymphocytes and increased apoptotic rate in the spleen of both age groups; CD45RC+ lymphocytes in the thymus and CD4+, 
CD8+ and CD90+cells in the spleen were reduced in the infant rats only, while in early pubertal rats reduction was not 
significant compared to the control animals. 
This microscopic study shows that different neuroendocrine consequences of chronically applied variable vs. repeating stressors 
during various periods of early age induce complex age-dependent immunomodulation due to the overlapping of the 
developmental changes and post-stress alterations in the central and peripheral lymphoid organs in the immature body of the 
experimental animals. 
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INTRODUCTION: 

In recent years, immunomodulatory effect of stress 

was shown in numerous papers [1-10]. Stress-

responsiveness is determined by the interplay of the 

neuroendocrine and sympathetic nervous systems 
[11]. Stress-induced immunity changes are regulated 

by different mechanisms, among which the most 

significant is the effect of the hypothalamo-pituitary-

adrenal axis hormones on the receptors of the 

immune cells [12,5,13]. Many researchers 

demonstrate that chronic stress may suppress immune 

function of the body and initiate accelerated 

immunological aging, while short-term stress is 

usually immuno-enhancing [14,15,10,5,6,8,9]. 

 

On the contrary, other investigators provide evidence 

of immunosuppression after a short-term stress and 
absence of immunosuppression or even immuno-

enhancement in chronic stress 

[16,17,18,2,4,12,18,19]. For example, chronic 

psychosocial stress was shown to induce activation 

and differentiation of T cells into Th1, Th2, and Th17 

effector cells in peripheral lymph nodes; enhance the 

frequency of regulatory T cells in the CD4 

population, the suppressive activity of bone marrow-

derived myeloid-derived suppressor cells towards 

proliferating T cells in the spleen and create 

inflammatory immune status of the body [16,17]. 
These controversies may be explained by the 

complexity of the effect of stress hormones on the 

immune function of the body and demonstrate that 

the problem of stress-related immunomodulation is 

far from being resolved. 

 

Vulnerability of lymphoid tissue to stress depends not 

only on the type of stress (acute or chronic with 

various stress exposure length, physical or 

psychological, mild or severe, escapable or non-

escapable, predictable or non-predictable), but also 

on the other features which affect responsiveness of 
the hypothalamo-pituitary-adrenal axis, such as age, 

sex, strain of the experimental animal, history of 

previous  exposure to stressors, as well as the initial 

immune status of the body. On the contrary to the 

acute stress, the chronic one is more likely to 

adversely affect the neuroimmunoendocrine system 

[1,15,10,5,7]. 

 

In spite of all research performed to understand the 

complications of stress exposure of the body and 

attempts undertaken to find proper measures of 
defense,  further searches are necessary for clearer 

understanding of the mechanisms of post-stress 

changes in the central nervous system, endocrine 

glands and lymphoid organs. Quite often  stress-

related impairment of the immunity  is assessed using 

molecular or  immunological methods or even the 

weight of the immune organs (thymus, spleen) 

[20,21,2,22,23,8,24]. These methods may evaluate 

total cell  count of lymphoid cells in blood or 

lymphoid organs [1,3]. As thymus, lymph nodes and 
spleen are strongly compartmentalized organs, the 

distribution of different types of target cells between 

their compartments is very important for the adequate 

immune response. Very few microstructural research 

works have been done evaluating alterations in the 

immune organs after stress exposure. Some 

researchers assess various compartments in the 

lymphoid organs without evaluation of distribution of 

the immune cells among them and consideration of 

the crosstalk between different types of lymphocytes 

[25,4,9,26]. 

 
Early life stress may have severe consequences for 

the body, including disregulation of the  

hypothalamo-pituitary-adrenal axis and increased 

overall risk on psychopathology [27]. Although 

various aspects of post-stress immunomodulation has 

been studied widely in different age groups 

[12,13,26,19], detailed stress-induced alterations in 

the lymphoid organs during early life need to be 

further elaborated. In few papers on stress-induced 

morphological changes in the immune system of the 

immature body, the correlation between 
developmental and stress-induced alterations in the 

lymphoid organs is not emphasized [20,4,23,9,24]. 

 

Recently, some papers described consequences of 

exposure to the changing stressors, which become 

more common these days [20,28,29,9,24]. Changes to 

the microarchitecture of both central and peripheral  

lymphoid organs in the immature body exposed to 

variable stressors at some age deserve more attention 

for deeper comprehension  of their mechanisms and 

development of the defensive  measures. 

 
The objective of this study is to assess the influence 

of repeating and variable stressors on the 

microstructure of lymphoid tissue in the primary and 

secondary immune organs of the periadolescent rats 

of different age. 

 

MATERIAL AND METHODS:  
Periadolescent Sprague Dawley male rats aged 30 

(infant period) and 60 (early pubertal period) days 

[30] were involved in this study. The design of the 

project was approved by the ethical committee of the 
Faculty of Medicine, UiTM, Selangor, Malaysia, 

protocol ACUC 4-11, 14.04.11. 

Each age group included three subgroups of six rats 

each, making a total of 36 rats. Group 1 served as an 

age-matched control, Group 2 animals were exposed 
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to the repeating stressors and Group 3 animals were 

exposed to variable stressors [31]. Exposure lasted 

for 9 days with daily 2-hour stress sessions. Control 

animals were not in contact with the treated animals. 

After the last stress session, animals were euthanized 
under anaesthesia. Their thymus and spleen were 

sampled, processed, embedded in paraffin, sectioned 

and stained by haematoxylin and eosin. 

Immunohistochemistry was performed using 

antibodies against CD4 (clone W3/25, AbDSerotec, 

US); CD8 (clone MRC OX8, AbDSerotec); CD90 

(clone HIS51, BD Biosciences); caspase-3,  

(AbDSerotec, US);  СD20 (clone R1N-9D3, 

AbDSerotec) and CD45RC (clone OX22, 

AbDSerotec, US). Streptavidin-biotin-peroxydase 

was used to identify the end product, according to 

manufacturer’s recommendations. Quantitative data 
on the distribution of immunoreactivity were 

obtained using the Image Pro+ 8.0 (Media 

Cybernetics, US) software. 

 

All data are presented as the mean ± S.E.M, (n = 6) 

group. The results were analyzed by one-way 

analysis of variance (ANOVA) followed by Student–

Newman–Keuls multiple comparison test; p<0.05 

values were considered as statistically significant. 

 

RESULTS: 
Both repeating and variable stressors caused 

microscopic changes in the spleen which included 

reduction of the volume of the T- and B-zones in the 

white pulp, marginal zone (MZ), expanded marginal 

sinus (MS), decreased cellular density in the 

periarterial lymphoid sheathes (PALS) around the 

central arteries (CA) and arteries of the white pulp 

(AWP), and in the lymphoid nodules (LN), increased 

number of macrophages and megakaryocytes (Mb) in 

the red pulp (RP) (Fig.1). Microarchitecture of the 

thymus in both experimental groups was also 

disrupted, with reduced thickness of the thymic 
cortex (C), indistinct border between cortex and 

medulla (M), increased number of tingible body 

macrophages (TbM) in the cortex and Hassal’s 

corpuscles in the medulla (Fig.2). 
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Fig.1. Microphotographs of the spleen of the control (1a,d,g) and experimental (repeating-1b,e,h; variable-

1c,f,i)groups of rats; 1а,b,c – infant rats, staining for CD8; 1d,e,f – early pubertal rats, staining for CD90; 1g,h,I 

infant rats,  staining for CD20. Magnification x400 (1a,b,c,d,e,f,i) and x200 (g,h). Legends: MZ – marginal zone, 

MS – marginal sinus, PALS – periarterial lymphoid sheath, CA – central artery, AWP – artery of the white pulp, LN 

– lymphoid nodule, Mb – megakaryocyte. 
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Fig.2. Microphotographs of the thymus of the control (2a) and experimental (repeating – 2b, variable – 2c) 

groups of infant rats; staining for CD45RC; magnification x400. Legends: C – cortex, M - medulla, TbM -tingible 

body macrophages 

Immunohistochemical staining revealed changes in the distribution of the immunocytes between different 

compartments of the spleen and thymus. The data of morphometric analysis are presented in Figures 3 to 8. 
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There was a highly significant reduction of volume 

density of the CD8+ (p<0.01) and CD90+ (p<0.01 

and p<0.001) cells in the variable stress groups of 

younger and older age subgroups. In the repeating 
stress group, it was significantly reduced in the 

younger age subgroup only (p<0.05), while in the 

older subgroup the difference from control group did 

not reach the level of significance (Figures 3 and 4). 

In the variable stress group, CD4+ cells in the spleen 

showed highly significant (p<0.01) and significant 

(p<0.05) reductions of volume densities in the 

younger and older groups respectively. In the 

repeating stress group, this reduction was significant 

only in younger rats (p<0.05) (Fig.5). CD20-positive 

cells were significantly reduced in both experimental 

groups and age subgroups with different levels of 
significance (p<0.05 in the repeating stress group and 

p<0.01 in the variable stress group) (Fig. 6). Caspase-

3 positive cells displayed significantly increased 

volume density (p<0.05) in both age subgroups of the 

repeating stress group. In the heterotypic variable 

stress group, the difference was significant for the 

older subgroup (p<0.05) and highly significant  

(p<0.01) for the younger age group (Fig.7). 

 

In the thymus, volume density of the CD45RC 

groups showed highly significant reductions in both 
younger age stress subgroups (p<0.01), while in the 

older group this difference was significant only in the 

variable stress group (p<0.05) (Fig.8). 

 

DISCUSSION: 

Our data are in agreement with the results of other 

investigators on the immunosuppressive effect of 

chronic stress with reduced lymphocyte population 

and antibody production due to stress hormones in 

the periadolescent animals [20,23,8,24,19], and 

provide additional information on the apoptotic rate 

of splenocytes and distribution of different 
populations of lymphocytes  between the 

compartments of the central and peripheral lymphoid 

organs in the growing body of the stressed 

experimental animals. Earlier we reported our data on 

the changes in the splenic white pulp of the infantile 

and adolescent rats induced by the homo- and 

heterotypic stressors, which showed that stress 

exposure, particularly during the most sensitive 

period  of immunological maturation (preweaning 

age) causes lymphocyte  depletion in the T- and B-

zones of the organ, reduction of the number of 
follicular dendritic cells, inhibition of proliferation of 

splenocytes and increased apoptotic rate, the severity  

of which depended on the  type of stressors applied 

[32]. 

 

Our current research demonstrated the effect of the 

repeating and variable stressors on the  

microarchitecture and intensity of apoptoses in the 

central (thymus) and peripheral (spleen) organs of the 
immune system in the infant and early pubertal rats, 

and altered distribution of different subpopulations of 

immunocytes between thymic cortex/medulla and 

splenic white pulp/red pulp/marginal zone. 

 

It has been shown [4,18]  that chronic stress increases 

the mass of the white pulp and its subcompartments 

and enhances immune reactivity in the animals with 

the previous early life stress history. Our results show 

that early life stress has immediate 

immunosuppressive effect which makes the growing 

body vulnerable to infections and other adverse 
events, but once overcome, we presume, it may result 

in enhanced immunity during stress exposure in 

adulthood. 

 

On the contrary to the other researchers, who were 

mainly using immunological and 

biochemical/molecular methods for the evaluation of 

the post-stress immune status of the body, we applied 

histological and immunohistochemical methods 

which allowed us not only to observe the microscopic 

alterations in the subcompartments of the central and 
peripheral immune organs, but also to assess 

distribution of different population of immunocytes 

between them. Our results showed that sensitivity to 

the different types of stress (repeating vs. variable) 

depends on the particular age within periadolescent 

period of early life. Different subpopulation of T-

cells (CD4+, CD8+, CD90+) were significantly 

reduced in the younger group of animals subjected to 

both types of stress exposures. In older rats, this was 

true only in the variable stress group. Similar patterns 

of changes were observed in the recirculation pool of 

lymphocytes, as demonstrated by image analysis of 
the CD45RC+ cells in the thymic medulla. These 

changes correspond to the hypothalamo-hypopheseo-

adrenal system activation patterns in different stress 

paradigms at early stages of postnatal development 

[33,34]. On the contrary, B-cell density was 

significantly reduced in the older rats of both stress 

groups. This finding indicates different sensitivity to 

various types of stress of the cells in the B-zones of 

the spleen in the different age groups. Similarly, the 

rate of apoptosis was increased in both types of 

chronic stress in younger and older rats as evidenced 
by image analysis of the caspase-3+cells. Thus, 

variable and repeating stress-related 

immunomodulation in the central and peripheral 

immune organs shows diverse scopes and ranges at 

different stages of early postnatal life and proves to 
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be a result of complex correlations of developmental 

and post-stress alterations in the body. 
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