Volume : 10, Issue : 09, September – 2023

Title:

04.FORMULATION AND DEVELOPMENT OF SOLID LIPID NANOPARTICLES BASED NANOGEL FOR DERMAL DELIVERY OF TOLMETIN.

Authors :

Mr. Akshay Dhannalal Mahajan, Mr. Kalpeshkumar S. Wagh

Abstract :

Topical administration of the Tolmetin is an anti-inflammatory agent with analgesic and antipyretic properties. It is used to treat osteoarthritis, rheumatoid arthritis and control acute pain. The therapeutic effects of Tolmetin are achieved via inhibition of the synthesis of prostaglandins involved in fever, pain, swelling and inflammation. Although, topical application of Tolmetin offers the advantage of delivering a drug directly to the disease site in order to maximize local effects without concurrent systemic activity yet, no formulation of Tolmetin is available in the market for topical use. The most difficult aspect of the topical drug delivery system is the formidable barrier properties of the stratum corneum (SC), the outermost layer of the skin that prevents percutaneous absorption of drugs.
Keywords: Tolmetin, Zeta potential, X-ray Diffraction Studies.

Cite This Article:

Please cite this article in press Akshay Dhannalal Mahajan et al, Formulation And Development Of Solid Lipid Nanoparticles Based Nanogel For Dermal Delivery Of Tolmetin, Indo Am. J. P. Sci, 2023; 10 (09).

Number of Downloads : 10

References:

1. Jain NK. Controlled and novel drug delivery CBS publishers & distributors. Daria Gang, New Delhi. 1997:101-27.
2. http://www.frost.com/prod/servlet/market-insight-print.pag?docid=134287829 [Accessed: Feb. 7, 2022].
3. https://www.boomer.org/c/p4/c07/c07.pdf [Accessed: Feb. 7, 2022].
4. https://www.marketsandmarkets.com/market-Reports/topical-drug-deliverymarket- 124871717.html [Accessed: Feb. 7, 2022].
5. Müller RH, Runge SA, Ravelli V, Thünemann AF, Mehnert W, Souto EB. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. European journal of pharmaceutics and biopharmaceutics. 2008 Mar 1;68(3):535-44.
6. Lippacher A, Müller RH, Mäder K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. International journal of pharmaceutics. 2001 Feb 19;214(1-2):9-12.
7. Pandya JB, Parmar RD, Soniwala MM, Chavda JR. Solid lipid nanoparticles: overview on excipients. Asian Journal of Pharmaceutical Technology & Innovation. 2013;1(3):01-9.
8. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian journal of pharmaceutical sciences. 2009 Jul;71(4):349.
9. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics. 2000 Jul 3;50(1):161-77.
10. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled release. 2008 Apr 21;127(2):97-109.
11. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced drug delivery reviews. 2007 Jul 10;59(6):478-90.
12. Vyas SP, Khar RK. Controlled drug delivery concepts and advances. vallabh prakashan. 2002;1:411-7.
13. Lee CH, Chien YW. Drug delivery: Vaginal route. InEncyclopedia of Pharmaceutical Science and Technology, Fourth Edition 2013 Jul 1 (pp. 1236-1259). CRC Press.
14. Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International journal of nanomedicine. 2007 Sep;2(3):289.
15. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled release. 2008 Apr 21;127(2):97-109.
16. zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European journal of pharmaceutics and biopharmaceutics. 1998 Mar 1;45(2):149-55.
17. Kuo YC, Chen HH. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. International journal of pharmaceutics. 2009 Jan 5;365(1-2):206-13.
18. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2009 Jun 1;5(2):184-91.
19. Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. Aaps Pharmscitech. 2007 Mar;8(1):E162-70.
20. Teja VC, Chowdary VH, Raju YP, Surendra N, Vardhan RV, Reddy BK. A glimpse on solid lipid nanoparticles as drug delivery systems. J Glob Trends Pharm Sci. 2014;5(2):1649-57.
21. Ekambaram P. Formulation and Evaluation of PH Triggered In Situ Gelling System of Levofloxacin (Doctoral dissertation, Madurai Medical College, Madurai).
22. Abdelbary G, Fahmy RH. Novel Drug Delivery. AAPS Pharm. Sci. Tech. 2009;10(1):1.
23. Harivardhan Reddy L, Murthy RS. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPs PharmSciTech. 2005 Jun;6(2):E158-66.
24. Sandhu P, Bilandi A, Kumar S, Rathore D, Bhardwaj S. Additives in topical dosage forms. IJPCBS. 2012;2(1):78-96.
25. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research. 1995 Mar;12(3):413-20.
26. Dao Thanh T. Desarrollo galénico de nuevas formulaciones inyectables de meloxicam y amoxicilina sódica para uso veterinario.
27. Burke A, Smyth E, FitzGerald GA. Analgesic-antipyretic agents; pharmacotherapy of gout. The pharmacological basis of therapeutics. 2006;1:706.
28. Oliveira IM, Fernandes DC, Cengiz IF, Reis RL, Oliveira JM. Hydrogels in the treatment of rheumatoid arthritis: Drug delivery systems and artificial matrices for dynamic in vitro models. Journal of Materials Science: Materials in Medicine. 2021 Jul;32(7):1-3.
29. PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 54677470, Meloxicam; [cited 2022 Apr. 30]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Meloxicam Fao Jecfa Monographs
30. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. Libros Digitales-Pharmaceutical Press; 2009.
31. Javadzadeh Y, Adibkia K, Hamishekar H. Transcutol®(diethylene glycol monoethyl ether): A potential penetration enhancer. InPercutaneous penetration enhancers chemical methods in penetration enhancement 2015 (pp. 195-205). Springer, Berlin, Heidelberg.
32. Tatke A, Dudhipala N, Janga KY, Balguri SP, Avula B, Jablonski MM, Majumdar S. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials. 2018 Dec 27;9(1):33.
33. El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug delivery. 2018 Jan 1;25(1):78-90.
34. Metta S, Maddukuri S. Formulation development of chitosan gels enriched with ofloxacin solid lipid nanoparticles. IJRPC. 2017;7(1):71-9.