Volume : 10, Issue : 12, December – 2023

Title:

IMMUNOLOGY PERSPECTIVE OF DENTISTRY- REVIEW

Authors :

Moaaz Alem Fadelelahy, Basem Saad AlGhamdi, Hassan Ahmed Darwish, Nawal Mohammed Alotaibi, Hussain Nasser Almashhadi, Nada Atif Alessa, Afaf Hamid Alharbi, Ahmad Adnan Samara, Ayman Mohammed Alshareef

Abstract :

The early pulpal responses to caries involve a variety of cells and inflammatory mediators. Typically, innate immunity is not specific to antigens but relies on receptors to identify shared chemical patterns seen in germs. This recognition triggers the process of internalizing and eliminating bacteria through phagocytosis. For instance, mannose- and scavenger-receptors are well-established receptors for phagocytosis that are found on neutrophils and macrophages. The recent discovery and analysis of mesenchymal stem cells (MSCs) in dental tissues represents a significant advancement in the progress of novel therapeutic approaches. Mesenchymal stem cells (MSCs) play a crucial role in the restoration of tooth pulp and are vital for the effectiveness of regenerative endodontic treatments. It is crucial to comprehend that immune cells and cytokines have the ability to influence the functionality of stem cells, hence potentially affecting their capacity for healing. However, stem cells possess immunoprivileged properties and possess the capacity to regulate immunological and inflammatory reactions, hence offering potential for enhancing therapeutic outcomes.

Cite This Article:

Please cite this article in press Moaaz Alem Fadelelahy et al., Immunology Perspective Of Dentistry- Review, Indo Am. J. P. Sci, 2023; 10 (12).

Number of Downloads : 10

References:

1. Abbas A, Lichtman A. Cellular and molecular immunology, 5th ed. Philadelphia: Saunders, 2003.
2. CsillagM,BerggreenE,FristadI,HaugSR,BletsaA,HeyeraasKJ.Effectofelectrical tooth stimulation on blood flow and immunocompetent cells in rat dental pulp after sympathectomy. Acta Odontol Scand 2004;62(6):305–12.
3. Wadachi R, Hargreaves KM. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 2006;85(1):49 –53.
4. Offenbacher S, Beck JD. Commentary: Changing Paradigms in the Oral Disease-Systemic Disease Relationship. J Periodontol (2014) 85:761–4.
5. Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, et al.. Aggregatibacter Actinomycetemcomitans-Induced Hypercitrullination Links Periodontal Infection to Autoimmunity in Rheumatoid Arthritis. Sci Transl Med (2016) 8:369ra176.
6. Lamster IB, Pagan M. Periodontal Disease and the Metabolic Syndrome. Int Dent J (2017) 67:67–77.
7. Curtis MA, Diaz PI, Van Dyke TE. The Role of the Microbiota in Periodontal Disease. Periodontol 2000 (2020) 83:14–25.
8. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al.. The Subgingival Microbiome in Health and Periodontitis and its Relationship With Community Biomass and Inflammation. ISME J (2013) 7:1016–25.
9. Krifka S, Petzel C, Hiller KA et al. (2010) Resin monomer- induced differential activation of map kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials 31, 2964–75.
10. Lamblin G, Leprince J, Devaux J, Mestdagh M, Gallez B, Leloup G (2010) Hydroxyl radical release from dental resins: electron paramagnetic resonance evidence. Acta Biomateria- lia 6, 3193–8.
11. Baume LJ. Dental pulp conditions in relation to carious lesions. Int Dent J 1970;20(2):309 –37.
12. Brannstrom M, Lind PO. Pulpal response to early dental caries. J Dent Res 1965;44:1045–50.
13. GordonS,TaylorPR.Monocyteandmacrophageheterogeneity.NatRevImmunol 2005;5(12):953– 64.
14. KamalAM,OkijiT,KawashimaN,SudaH.Defenseresponsesofdentin/pulpcom- plex to experimentally induced caries in rat molars: an immunohistochemical study on kinetics of pulpal Ia antigen-expressing cells and macrophages. J Endod 1997;23(2):115–20.
15. OhshimaH,SatoO,KawaharaI,MaedaT,TakanoY.Responsesofimmunocompe- tent cells to cavity preparation in rat molars: an immunohistochemical study using OX6-monoclonal antibody. Connect Tissue Res 1995;32(1– 4):303–11.
16. Izumi T, Kobayashi I, Okamura K, Matsuo K, Kiyoshima T, Ishibashi Y, et al. An immunohistochemical study of HLA-DR and alpha 1-antichymotrypsin- positive cells in the pulp of human non-carious and carious teeth. Arch Oral Biol 1996;41(7):627–30.
17. Maghazachi AA. Compartmentalization of human natural killer cells. Mol Immunol 2005;42(4):523–9.
18. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and den- dritic cells: “l’union fait la force”. Blood 2005;106(7):2252– 8.
19. Kikuchi T, Hahn CL, Tanaka S, Barbour SE, Schenkein HA, Tew JG. Dendritic cells stimulated with Actinobacillus actinomycetemcomitans elicit rapid gamma in- terferon responses by natural killer cells. Infect Immun 2004;72(9):5089 –96.
20. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 2004;5(10):996 –1002.
21. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995;13:251–76.
22. Hahn CL, Best AM, Tew JG. Cytokine induction by Streptococcus mutans and pulpal pathogenesis. Infect Immun 2000;68(12):6785–9.
23. Hahn CL, Best AM, Tew JG. Comparison of type 1 and type 2 cytokine production by mononuclear cells cultured with streptococcus mutans and selected other caries bacteria. J Endod 2004;30(5):333– 8.
24. He H, Yu J, Liu Y et al. (2008) Effects of fgf2 and tgfbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biology International 32, 827–34.
25. Hørsted-Bindslev P, Løvschall H (2002) Treatment outcome of vital pulp treatment. Endodontic Topics 2, 24–34.
26. Howard C, Murray PE, Namerow KN (2010) Dental pulp stem cell migration. Journal of Endodontics 36, 1963–6.
27. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. Those from other sources: their biology and role in regenerative medicine. Journal of Dental Research 88, 792–806.
28. Huang CH, Tseng WY, Yao CC, Jeng JH, Young TH, Chen YJ (2010) Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type i receptor. Journal of Cellular Physiology 225, 140–51.
29. Huojia M, Muraoka N, Yoshizaki K et al. (2005) Tgf-beta3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development. Development, Growth & Differentiation 47, 141–52.
30. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. Journal of Dental Research 83, 590–5.
31. Jiang L, Zhu YQ, Du R et al. (2008) The expression and role of stromal cell-derived factor-1alpha-cxcr4 axis in human dental pulp. Journal of Endodontics 34, 939–44.
32. Josefowicz SZ, Rudensky A (2009) Control of regulatory t cell lineage commitment and maintenance. Immunity 30, 616– 25.
33. PerkinsMN,KellyD,DavisAJ.BradykininB1andB2receptormechanismsandcytokine-induced hyperalgesia in the rat. Can J Physiol Pharmacol 1995;73(7):832– 6.
34. Jonakait GM, Hart RP. Immune cytokine regulation of sympathetic ganglion response to injury. Neuroimmunomodulation 1995;2(4):236 – 40.
35. RittnerHL,MachelskaH,SteinC.Leukocytesintheregulationofpainandanalgesia. J Leukoc Biol 2005;78(6):1215–22.
36. CasascoA,CalligaroA,CasascoM,SpringallDR,PolakJM,PoggiP,etal.Peptidergic nerves in human dental pulp. An immunocytochemical study. Histochemistry 1990;95(2):115–21.
37. Matsumoto H, Sunakawa M, Suda H. Do pulpal inflammatory changes modulate periodontal mechanoreceptor afferent activity? In: Shimono M, Maeda T, Suda H, Takahashi K, eds. Proceedings of the International Conference on Dentin/Pulp Complex 1995, Chiba, Japan. Chicago: Quintessence, 1995;327– 8.
38. Mudie AS, Holland GR. Local opioids in the inflamed dental pulp. J Endod 2006;32(4):319 –23.
39. Wang X., Li Y., Feng Y., Cheng H., Li D. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. Journal of Periodontal Research. 2019;54(4):329–338.
40. Olmedo D., Fernández M. M., Guglielmotti M. B., Cabrini R. L. Macrophages related to dental implant failure. Implant Dentistry. 2003;12(1):75–80.
41. Pajarinen J., Kouri V.-P., Jämsen E., Li T.-F., Mandelin J., Konttinen Y. T. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomaterialia. 2013;9(11):9229–9240.
42. Thalji G. N., Nares S., Cooper L. F. Early molecular assessment of osseointegration in humans. Clinical Oral Implants Research. 2014;25(11):1273–1285.
43. Robson M. C., Dubay D. A., Wang X., Franz M. G. Effect of cytokine growth factors on the prevention of acute wound failure. Wound Repair and Regeneration. 2004;12(1):38–43.
44. Chehroudi B., Ghrebi S., Murakami H., Waterfield J. D., Owen G., Brunette D. M. Bone formation on rough, but not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. Journal of Biomedical Materials Research Part A. 2010;93(2):724–737.
45. Venkatesan G., Uppoor A., Naik D. G. Redefining the role of dendritic cells in periodontics. Journal of Indian Society of Periodontology. 2013;17(6):700–705.