Volume : 10, Issue : 12, December – 2023

Title:

MICROENCAPSULATION OF INFUSED OLIVE OIL WITH SPIRULINA AND MORINGA OLEIFERA EXTRACT

Authors :

P. Sanjitha, E. Sathishkumar, R. Sivasubramaniam, V. Subash, S. Mohan Kumar

Abstract :

Complex coacervates of gelatin and Sodium Alginate was used to microencapsulate infused olive oil with spirulina and moringa olifera extract with multiple functional ingredients like oleic acid, palmitic acid, vitamins, calcium, magnesium and macromolecules like proteins, carbohydrates, essential fats. A homogenization speed of rpm for 30minutes resulted in low surface oil content (0.12%), high encapsulation efficacy (97.23%) and encapsulation yield (92.14%) with significant enhanced stability index. The Fourier Transform Infrared Spectrum analysis showed that there was no observable oxidation of microencapsulated infused olive oil.

Cite This Article:

Please cite this article in press E. Sathishkumar et al, Microencapsulation Of Infused Olive Oil With Spirulina And Moringa Oleifera Extract, Indo Am. J. P. Sci, 2023; 10 (12).

Number of Downloads : 10

References:

1. Chaabane, D., Yakdhane, A., Vatai, G., Koris, A. and Nath, A., 2022. Microencapsulation of olive oil: a comprehensive review. Periodica Polytechnica Chemical Engineering, 66(3), pp.354-366.
2. da Silva Soares, B., de Carvalho, C.W.P. and Garcia-Rojas, E.E., 2021. Microencapsulation of sacha inchi oil by complex coacervates using ovalbumin-tannic acid and pectin as wall materials. Food and Bioprocess Technology, 14, pp.817-830.
3. Yari, S., Nasirpour, A. and Fathi, M., 2016. Effect of polymer concentration and acidification time on olive oil microcapsules obtained by complex coacervation. Applied Food Biotechnology, 3(1), pp.53-58.
4. Timilsena, Y.P., Akanbi, T.O., Khalid, N., Adhikari, B. and Barrow, C.J., 2019. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International journal of biological macromolecules, 121, pp.1276-1286.
5. Xiao, Z., Liu, W., Zhu, G., Zhou, R. and Niu, Y., 2014. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture, 94(8), pp.1482-1494.
6. Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S. and Zhang, X., 2011. Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), pp.455-460.
7. Ach, D., Briançon, S., Broze, G., Puel, F., Rivoire, A., Galvan, J.M. and Chevalier, Y., 2015. Formation of microcapsules by complex coacervation. The Canadian Journal of Chemical Engineering, 93(2), pp.183-191.
8. Zhang, K., Zhang, H., Hu, X., Bao, S. and Huang, H., 2012. Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation. Colloids and Surfaces B: Biointerfaces, 89, pp.61-66.
9. Shinde, U.A. and Nagarsenker, M.S., 2009. Characterization of gelatin-sodium alginate complex coacervation system. Indian journal of pharmaceutical sciences, 71(3), p.313.
10. Bastos, L.P.H., Vicente, J., dos Santos, C.H.C., de Carvalho, M.G. and Garcia-Rojas, E.E., 2020. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, p.105605.
11. Saravanan, M. and Rao, K.P., 2010. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydrate Polymers, 80(3), pp.808-816.
12. Migneault, I., Dartiguenave, C., Bertrand, M.J. and Waldron, K.C., 2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), pp.790-802.
13. Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K. and Roveri, N., 2001. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), pp.763-768.
14. Matsuda, S., Iwata, H., Se, N. and Ikada, Y., 1999. Bioadhesion of gelatin films crosslinked with glutaraldehyde. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 45(1), pp.20-27.
15. Lee, W.J., Tan, C.P., Sulaiman, R., Hee, Y.Y. and Chong, G.H., 2020. Storage stability and degradation kinetics of bioactive compounds in red palm oil microcapsules produced with solution-enhanced dispersion by supercritical carbon dioxide: A comparison with the spray-drying method. Food chemistry, 304, p.125427.
16. Felix, P.H.C., Birchal, V.S., Botrel, D.A., Marques, G.R. and Borges, S.V., 2017. Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. Journal of food processing and preservation, 41(3), p.e12919.
17. Yu, F., Li, Z., Zhang, T., Wei, Y., Xue, Y. and Xue, C., 2017. Influence of encapsulation techniques on the structure, physical properties, and thermal stability of fish oil microcapsules by spray drying. Journal of Food Process Engineering, 40(6), p.e12576.
18. Reich, S. and Cohen, Y., 1981. Phase separation of polymer blends in thin films. Journal of Polymer Science: Polymer Physics Edition, 19(8), pp.1255-1267.
19. Lloyd, D.R., Kinzer, K.E. and Tseng, H.S., 1990. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. Journal of Membrane Science, 52(3), pp.239-261.
20. Jyothi, S.S., Seethadevi, A., Prabha, K.S., Muthuprasanna, P. and Pavitra, P., 2012. Microencapsulation: a review. Int. J. Pharm. Biol. Sci, 3(2), pp.509-531.
21. Siddiqui, O. and Taylor, H., 1983. Physical factors affecting microencapsulation by simple coacervation of gelatin. Journal of Pharmacy and Pharmacology, 35(2), pp.70-73.
22. Lazko, J., Popineau, Y. and Legrand, J., 2004. Soy glycinin microcapsules by simple coacervation method. Colloids and Surfaces B: Biointerfaces, 37(1-2), pp.1-8.
23. Arshady, R., 1990. Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polymer Engineering & Science, 30(15), pp.905-914.
24. Paulo, F. and Santos, L., 2017. Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77, pp.1327-1340.
25. Murua, A., Portero, A., Orive, G., Hernández, R.M., de Castro, M. and Pedraz, J.L., 2008. Cell microencapsulation technology: towards clinical application. Journal of controlled release, 132(2), pp.76- 83.
26. Cook, M.T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V.V., 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of controlled release, 162(1), pp.56-67.
27. Sarao, L.K. and Arora, M., 2017. Probiotics, prebiotics, and microencapsulation: A review. Critical reviews in food science and nutrition, 57(2), pp.344-371.
28. Anal, A.K. and Singh, H., 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food science & technology, 18(5), pp.240-251.
29. Etchepare, M.D.A., Barin, J.S., Cichoski, A.J., JacobLopes, E., Wagner, R., Fries, L.L.M. and Menezes, C.R.D., 2015. Microencapsulation of probiotics using sodium alginate. Ciência Rural, 45, pp.1319-1326.
30. Gasperini, L., Mano, J.F. and Reis, R.L., 2014. Natural polymers for the microencapsulation of cells. Journal of the royal society Interface, 11(100), p.20140817.
31. Park, J.H., Ye, M. and Park, K., 2005. Biodegradable polymers for microencapsulation of drugs. Molecules, 10(1), pp.146-161.
32. Durán, N., Alvarenga, M.A., Da Silva, E.C., Melo, P.S. and Marcato, P.D., 2008. Microencapsulation of antibiotic rifampicin in poly (3-hydroxybutyrate-co-3- hydroxyvalerate). Archives of pharmacal research, 31, pp.1509-1516.
33. Trojer, M.A., Nordstierna, L., Bergek, J., Blanck, H., Holmberg, K. and Nyden, M., 2015. Use of microcapsules as controlled release devices for coatings. Advances in colloid and interface science, 222, pp.18-43.