Volume : 11, Issue : 01, January – 2024

Title:

A REVIEW ARTICLE ON NOVEL DRUG’S TARGETING PARKINSONS DISEASE

Authors :

Honey.E, Sai Aswini

Abstract :

Parkinson’s Disease is a common neurodegenerative disease characterised by rigidity, rest tremor, postural instability. The main aim of this article is to provide knowledge about the novel drugs that are being used in the treatment of Parkinson disease which are currently investigated and study the possibility in therapeutic targets. The novel therapeutic approach is to ensure the symptological control in the Parkinson disease patient. The treatment options are limited with most of the current novel therapeutic approach based on restoration of the dopaminergic tone in the Striatum. As we understand the pathogenesis of PD Accomplished the novel therapeutic drugs are emerged to control the symptoms of PD without problematic side effects. This novel approach ensures the expedited route to the clinics by providing the safety data regarding the novel therapeutic approach in managing the PD patients. These novel therapeutic approaches targeting on PD treatment are likely to evolve considerably over the next coming years.
Keyword : Novel Dopaminergic Drugs, Deep Brain Stimulation, Stem cell Therapy, Exabalate Neuro System, Novel Levodopa formulation.

Cite This Article:

Please cite this article in press E.Honey et al., A Review Article On Novel Drugs Targeting Parkinsons Disease, Indo Am. J. P. Sci, 2024; 11 (01).

Number of Downloads : 10

References:

1. Sherer TB, S Chowdhury, K Peabody, D Brooks: Overcoming obstacles in Parkinson’s Disease. Movement Disorders 27(13), 1606-1611 (2012)
2. Chou K: Clinical manifestations of Parkinson Disease. UpToDate. Retrieved on 7/22/2013 from www.uptodate.com. (2013)
3. Parkinson’s Disease Foundation: Statistics on Parkinson’s. Retrieved from http://www.pdf.org/en/parkinson_statistics. (2013)
4. Fritsch T, K Smyth, M Wallendal, T Hyde, G Leo, D Geldmacher: Parkinson Disease: Research update and clinical management. Southern Medical Association 105(12), 650-656 (2012)
5. Wright Willis A, B Evanoff, M Lian, S Criswell, B Racette: Geographic and ethnic variation in Parkinson Disease: A population-based study of US Medicare Beneficiaries. Neuroepidemiology, 34, 143-151 (2010)
6. Chinta S, C Lieu, M Demaria, R Laberge, J Campisi, J Anderson: Environmental stress, ageing, and glial cell senescence: A novel mechanistic link to Parkinson’s Disease? Journal of Internal Medicine 273, 429-436 (2013)
7. MacPhee G, D Stewart: Parkinson’s Disease. Reviews in Clinical Gerontology 11, 33-49 (2001)
8. Gazewood J, D Richards, K Clebak: Parkinson Disease: An update. American Family Physician 87(4), 267-273 (2013)
9. Brown T, P Rumsby, A Capleton, L Rushton, L Levy: Pesticides and Parkinson’s Disease: Is there a link? Environmental Health Perspectives 14(2), 156-164 (2006)
10. Ceccatelli S: Mechanisms of neurotoxicity and implications for neurological disorders. Journal of Internal Medicine 273, 426-429 (2013)
11. Jankovic J, H Hurtig, J Dashe: Etiology and pathogenesis of Parkinson Disease. UpToDate. Retrieved on 7/22/2013 from www.uptodate.com. (2013)
12. Postuma R, J Gagnon, J Montplaisir: Clinical prediction of Parkinson’s Disease: Planning for the age of neuroprotection. Journal of Neurology (81)9, 1008- 1013 (2009)
13. Hawkes C, K Del Tredici, H Braak: Review: Parkinson’s Disease: A dual-hit hypothesis. Neuropathology and Applied Neurobiology 33, 599-614 (2007)
14. Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol 2013;26:374-80. Back to cited text no. 132
15. WMM, Rau J, Knudsen K, Krack VP, Timmermann L, Halbig TD, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368:610-22. Back to cited text no. 133
16. Manjunath M, Yadav R, Dwarakanath S, Jhunjhunwala K, Jafar A, Surathi P, Lenka A, Stezin A, Sampath S, Pal PK. Experience of pallidal deep brain stimulation in dystonia at a tertiary care centre in India: An initial experience. Neurol India 2017;65:1322-9 Back to cited text no. 134
17. Pandey S. When to do deep brain stimulation surgery in Parkinson disease? Early or late?. Neurol India 2016;64:8-9. Back to cited text no. 135
18. JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep brain stimulation for Parkinson’s disease: An expert consensus and review of key issues. Arch Neurol 2011;68:165-71. Back to cited text no. 136
19. G, Agid Y. Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: Balancing the risks and benefits. Lancet Neurol 2013;12:1025-34. Back to cited text no. 137
20. Pandey S, Sarma N. Deep brain stimulation: Current status. Neurol India 2015;63:9-18. Back to cited text no. 138
21. Levine CB, Fahrbach KR, Siderowf AD, Estok RP, Ludensky VM, Ross SD, et al. Diagnosis and treatment of Parkinson’s disease: A systematic review of the literature: Summary. 2003 May. In: AHRQ Evidence Report Summaries. Rockville (MD): Agency for Healthcare Research and Quality (US);1998-2005. 57. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11895. [Last accessed on 2018 Jan. Back to cited text no. 139
22. Voges J, Hilker R, Bötzel K, Kiening KL, Kloss M, Kupsch A, et al. Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 2007;22: 1486-9. Back to cited text no. 140
23. Elahi, F. M. , & Miller, B. L. (2017). A clinicopathological approach to the diagnosis of dementia. Nature Reviews. Neurology, 13(8), 457–476. 10.1038/nrneurol.2017.96 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013 Aug 15;369 (7):640–648
25. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neuro2021 Jan;17(1):7–22
26. Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016 Aug 25;375(8):730–739.
27. Insightec Document: “Exablate Model 4000 Type 1.0 & Type 1.1 Application: brain Essential Tremor & Tremor Dominant Parkinson’s Disease Information For Prescribers” December 2018.Available from: https://www.insightec.com/media/1107/exablateneuroinfor mationforprescribers0usa.pdf
28. LeWitt PA, Fahn S. Levodopa therapy for Parkinson’s disease: A look backward and forward. Neurology 2016;86:S3-S12. Back to cited text no. 85
29. CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: Scientific rationale and clinical implications. Lancet Neurol 2006;5:677-87. Back to cited text no. 86
30. Cenci MA. Presynaptic mechanisms of l-DOPA- induced dyskinesia: The findings, the debate, and the therapeutic implications. Front Neurol 2014;5:242. Back to cited text no. 87
31. Hauser RA, Ellenbogen AL, Metman LV, Hsu A, O’Connell MJ, Modi NB, et al. Crossover comparison of IPX066 and a standard levodopa formulation in advanced Parkinson’s disease. Mov Disord 2011;26:2246-52. Back to cited text no. 8
32. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: A phase 3 randomised, double-blind trial. Lancet Neurol 2013;12:346- 56. Back to cited text no. 89
33. Pahwa R, Lyons KE, Hauser RA, Fahn S, Jankovic J, Porcher E, et al. Randomized trial of IPX066, carbidopa/levodopa extended release, in early Parkinson’s disease. Parkinsonism Relat Disord 2014;20:142-8. Back to cited text no. 90
34. Stocchi F, Hsu A, Khanna S, Ellenbogen A, Mahler A, Liang G, et al. Comparison of IPX066 with carbidopa-levodopa plus entacapone in advanced PD patients. Parkinsonism Relat Disord 2014;20:1335-40. Back to cited text no. 91
35. Waters CH, Nausieda P, Dzyak L, Spiegel J, Rudzinska M, Silver DE, et al. Long-term treatment with extended-release carbidopa-levodopa (IPX066) in early and advanced Parkinson’s disease: A 9-month open-label extension trial. CNS Drugs 2015;29:341-50. Back to cited text no. 92
36. Dhall R, Kreitzman DL. Advances in levodopa therapy for Parkinson’s disease: Review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology 2016;86:S13-24. Back to cited text no. 93
37. Fernandez HH, Standaert DG, Hauser RA, Lang AE, Fung VS, Klostermann F, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: Final 12-month, open- label results. Mov Disord 2015;30:500-9. Back to cited text no. 94
38. LeWitt PA, Friedman H, Giladi N. Accordion pill carbidopa/levodopa for improved treatment of advanced Parkinson’s disease symptoms. Mov Disord 2012;27(Suppl 1):S408. Back to cited text no. 95
39. LeWitt P, Friedman H, Giladi N. Sustained-release carbidopa-levodopa (accordian pill) in patients with advanced Parkinson’s disease: Pharmacokinetic and clinical experience. Mov Disord 2013;28(Suppl. 1):S499. Back to cited text no. 96
40. LeWitt PA, Giladi N, Gurevich T. Accordion pill carbidopa/levodopa (AP-CD/LD) for treatment of advanced Parkinson’s disease (PD). Mov Disord. 2014;29(Suppl. 1):S668. Back to cited text no. 97
41. Caraco Y, Oren S, LeWitt P. Constant therapeutic levodopa (LD) plasma concentrations maintained by continuous subcutaneous (SC) administration of ND-0612, a novel formulation of LD/carbidopa (CD). Mov Disord 2013;28(Suppl. 1):S452. Back to cited text no. 98
42. Giladi N, Caraco Y, Gurevich T, Djaldetti R. Pharmacokinetics and safety of ND0612L (levodopa/carbidopa for subcutaneous infusion): Results from a phase II study in moderate to severe Parkinson’s disease. Neurology 2015;84(Suppl. P1):187. Back to cited text no. 99
43. Muller T, Kuoppamaki M, Vahteristio M, Aho V. Novel levodopa product ODM-101 vs levodopa/carbidopa/entacapone in Parkinson’s disease with response fluctuations. Mov Disord 2013;28:S146. Back to cited text no. 100
44. Lewitt PA, Hauser RA, Grosset DG, Stocchi F, Saint-Hilaire MH, Ellenbogen A, et al. A randomized trial
45. Luinstra M, Grasmeijer F, Hagedoorn P, Moes JR, Frijlink HW, de Boer AH. A levodopa dry powder inhaler for the treatment of Parkinson’s disease patients in off periods. Eur J Pharm and Biopharm 2015;97:22-29. Back to cited text no. 102
46. PD MED Collaborative Group. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): A large, open-label, pragmatic randomised trial. Lancet 2014;384:1196-205. Back to cited text no. 103
47. Lang AE, Marras C. Initiating dopaminergic treatment in Parkinson’s disease. Lancet 2014;384:1164-1166
48. Barker RA, Parmar M, Studer L, et al.: Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson’s Disease: Dawn of a New Era. Cell Stem Cell. 2017;21(5):569–73. 10.1016/j.stem.2017.09.014 [PubMed][CrossRef][Google Scholar]
49. Christine CW, Bankiewicz KS, van Laar AD, et al.: Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol. 2019;85(5):704–14. 10.1002/ana.25450 [PMC free article] [PubMed] [CrossRef] [Google Scholar] Faculty Opinions Recommendation
50. Palfi S, Gurruchaga JM, Ralph GS, et al.: Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138
51. Lindvall O, Brundin P, Widner H, et al.: Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 1990;247(4942):574–7. 10.1126/science.2105529 [PubMed] [CrossRef] [Google Scholar]
52. Wenning GK, Odin P, Morrish P, et al.: Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol. 1997;42(1):95–107. 10.1002/ana.410420115 [PubMed] [CrossRef] [Google Scholar]
53. Brundin P, Pogarell O, Hagell P, et al.: Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain. 2000;123(Pt 7):1380–90. 10.1093/brain/123.7.1380 [PubMed] [CrossRef] [Google Scholar]
54. Barker RA, Götz M, Parmar M: New approaches for brain repair—from rescue to reprogramming. Nature. 2018;557(7705):329–34. 10.1038/s41586-018-0087-1 [PubMed] [CrossRef] [Google Scholar]
55. Gregory R.Miller S.Parkinson’s disease and the skin.Practical Neurol. 2015; 15: 246-249
https://doi.org/10.1136/practneurol-2015-001107View in Article Scopus (12) PubMed Crossref Google Scholar
56. Ravn A.H.Thyssen J.P. Egeberg A.Skin disorders in Parkinson’s disease: potential biomarkers and risk factors.Clin. Cosmet. Invest. Dermatol. 2017; 10: 87- 92https://doi.org/10.2147/CCID.S130319View in Article Scopus (18)PubMed Crossref Google Scholar
57. Skorvanek M.Bhatia K.P.The skin and Parkinson’s disease: review of clinical, diagnostic, and therapeutic issues.Mov. Disord. Clin. Pract. 2017; 4: 21-31
https://doi.org/10.1002/mdc3.12425 View in Article Scopus (15) PubMed Crossref Google Scholar
58. Adalsteinsson J.A.Kaushik S. Muzumdar S. Gutt…Ye Q.Wen Y.Al-Kuwari N.Chen X.
Association between Parkinson’s disease and melanoma: putting the pieces together.Front. Aging Neurosci. 2020; 12: 60 https://doi.org/10.3389/fnagi.2020.00060 View in Article Scopus (3) PubMed Crossref Google Scholar
59. Milani-Nejad N. Zhang M.Kaffenberger J.The association between bullous pemphigoid and neurological disorders: a systematic review. Eur. J. Dermatol. 2017; 27: 472-481 https://doi.org/10.1684/ejd.2017.3066 View in Article Scopus (13) PubMed Crossref Google Scholar
60. Savitt D. Jankovic J.Targeting α-synuclein in Parkinson’s disease: progress towards the development of disease-modifying therapeutics. Drugs. 2019; 79: 797-810 https://doi.org/10.1007/s40265-019-01104-1View in Article Scopus (24)PubMed Crossref Google Scholar
61. Fayyad M. Salim S.Majbour N.Erskine D.Stoops E.Mollenhauer B.El‐Agnaf O.M.A.
Parkinson’s disease biomarkers based on α‐synuclein.J. Neurochem. 2019; 150: 626-636
https://doi.org/10.1111/jnc.14809View in Article Scopus (16)PubMedCrossref Google Scholar
62. Ma L.Y.Liu G.L.Wang D.X.Zhang M.M.Kou W.Y.Feng T.Alpha-synuclein in peripheral tissues in Parkinson’s disease. ACS Chem. Neurosci. 2019; 10 https://doi.org/10.1021/acschemneuro.8b00383 View in Article Scopus (8)Crossref Google Scholar
63. Kuzkina A. Schulmeyer L.Monoranu C.-M Volkmann J.Sommer C.Doppler K.The aggregation state of α-synuclein deposits in dermal nerve fibers of patients with Parkinson’s disease resembles that in the brain.Park. Relat. Disord. 2019; 64: 66-72
64. https://doi.org/10.1016/j.parkreldis.2019.03.003 View in Article Scopus (7)PubMed Abstract Full Text Full Text PDFGoogle Scholar
65. Jellinger K.A.Neuropathology of nonmotor symptoms of Parkinson’s disease.in: Int. Rev. Neurobiol. Int Rev Neurobiol, 2017: 13-62https://doi.org/10.1016/bs.irn.2017.05.005View in Article Scopus (14) Crossref Google Scholar
66. V.Skin nerve α-synuclein deposits in Parkinson’s disease and other synucleinopathies: a review. Clin. Auton. Res. 2019; 29: 577-585 https://doi.org/10.1007/s10286-018-0581-View in Article Scopus (13)PubMed Crossref Google Scholar