Volume : 10, Issue : 02, February – 2023

Title:

06.HEXOSOMES: A NEW DRUG DELIVERY SYSTEM AND ITS APPLICATIONS

Authors :

Vinayak Katekar, Shruti Adhau, Vaishnavi Akotkar, Pooja Sakharkar

Abstract :

Hexosomes are the opposite hexagonalphases comprised of hexagonally close-packed unbounded water layers covered by surfactants monolayer. Hexosomes (dispersed HII phases) due to their special structural properties have potential to be used as deferent delivery vehicle for pharmaceuticals. Biologically active molecules can either be accommodated within the aqueous domains or can be directly join to the lipid hydrophobic moieties oriented radially outwards from the center of the water rods.Hexosomes are receiving increasing awareness for preparation of pharmaceutical formulations compared with the corresponding inverse nonlamellar phases due to their low viscosity that ensures ease of preparation and handling, particularly in engineering of parenteral dosage forms and the capability of delivering a wide range of diagnostic probesandtherapeutic agents.Hexosomes formulation exhibited high entrapment efficiency, high permeability and better stability on storage, thus proposing itself a novel carrier for various bioactive agents.
Keywords: Hexosomes, Reverse hexagonal phases,Drug delivery, Transdermal and Parenteral route.

Cite This Article:

Please cite this article in press Vinayak Katekar et al, Hexosomes: A New Drug Delivery System And Its Applications., Indo Am. J. P. Sci, 2023; 10 (02).

Number of Downloads : 10

References:

1. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res (N Y) 2006;23:1417e50.
2. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. Faseb J 2005;19:311e30.
3. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil, Caelyx, DOXOrubicin, and SinaDoxosome. J Control Release 2016;221:1e8.
4. Garcia-Pinel B, Porras-Alcala C, Ortega-Rodriguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 2019;9:638.
5. Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. TherDeliv 2019; 10:113e32.
6. Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. TherDeliv 2015;6:1347e64.
7. Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J PharmaceutSci 2013;48:416e27.
8. Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. CurrOpin Colloid Interface Sci 2020;48:28e39.
9. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. ExpetOpin Drug Deliv 2020;17:357e77.
10. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 2016;68:701e87.
11. Sastri KT, Radha GV, Pidikiti S, Vajjhala P. Solid lipid nanoparticles: preparation techniques, their characterization, and an update on recent studies. J ApplPharmaceutSci 2020;10:126e41.
12. Pucek A, Tokarek B, Waglewska E, Bazylinska U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics 2020;12:587.
13. Mahant S, Rao R, Souto EB, Nanda S. Analytical tools and evaluation strategies for nanostructured lipid carrier based topical delivery systems. ExpetOpin Drug Deliv 2020;17:963e92.
14. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017;264:306e32.
15. Kaasgaard, T.; Drummond, C.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys., 2006, 8, 4957-4975.
16. Amar-Yuli, I.; Wachtel, E.; Ben Shoshan, E.; Danino, D.; Aserin,A.; Garti, N. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir, 2007, 23, 3637- 3645.
17. Libster, D.; Ben Ishai, P.; Aserin, A.; Shoham, G.; Garti, N. From the microscopic to the mesoscopic properties of lyotropic reverse hexagonal liquid crystals. Langmuir, 2008, 24, 2118-2127.
18. Lopes, L. B.; Ferreira D. A.; Paula D.; Garcia J.; Thomazini A.; Fantini C. A.; Bentley B. Reverse hexagonal phase Nano dispersion of monoolein and oleic acid for topical delivery of peptides: in Vitro and in Vivo skin penetration of cyclosporin A. Pharm. Res., 2006, 23(6), 1332-1342.
19. Swarnakar, N. K.; Jain V.; Dubey V.; Mishra D.; Jain N.K. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm. Res., 2007, 24(12), 2223-2230.
20. Boyd, B. J.; Whittaker D. V.; Khoo S. M.; Davey G. Hexosomes formed from glycerate surfactants-formulation as a colloidal carrier for irinotecan. Int. J. Pharm., 2006, 318,154-162.
21. Amar-Yuli, I.; Wachtel, E.; Shalev, D.E.; Aserin, A.; Garti, N. Solubilization of food bioactives within lyotropic liquid crystalline mesophases. Curr. Opin. Colloid Interface Sci., 2009, 14, 21-32.
22. Israelachvili, J. N.; Mitchell D. J.; Ninhan B. W. Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans., 2, 1976, 72, 1525-68.
23. Mitchell, D. J.; Ninham, B. W. Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans., 2, 1981, 77, 601- 29.
24. Chang, C. M.; Bodmeier, R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J. Control. Release, 1997, 46, 215-222.
25. Boyd, B.J., Davey, G., Drummond, C.J., et al. Surfactants and Lyotropic Phases Formed There from, International Patent WO 2004/022530.
26. Clogston, J., Rathman, J., Tomasko, D., et al. Phase behaviour of a monoacylglycerol (Myverol 18–99 K)/water system. Chem. Phys. Lipids 2000; 107, 191–220.
27. Rosevear, F.B. Liquid crystals: the mesomorphic phases of surfactant compositions. J. Soc. Cosmetic Chem. 1968; 19, 581–594.
28. Rosevear, F.B. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J. Am. Oil Chem. Soc. 1954: 31, 628–639.
29. Rosevear, F.B. Liquid crystals: the mesomorphic phases of surfactant compositions. J. Soc. Cosmetic Chem. 1968; 19, 581–594.
30. Boyd, B.J., Whittaker, D.V., Khoo, S.-M., Davey, G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int. J. Pharm. 2006; 309, 218–226.
31. Gustafsson, J., Ljusberg-Wahren, H., Almgren, M., Larsson, K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 1997; 13, 6964–6971.
32. Boyd, B.J. Characterization of the drug release from cubosomes using the pressure ultrafiltration method. Int. J. Pharm. 2003; 260, 239–247.
33. Rivory, L.P., Robert, J. Reversed-phase high-performance liquid chromatographic method for the simultaneous quantitation of the carboxylate and lactone forms of the camptothecin derivative irinotecan, CPT-11, and its metabolite SN-38 in plasma. J. Chromatogr. B: Biomed. Appl. 1994; 661, 133–141.
34. Borne, J.; Nylander, T.; Khan, A. Phase behaviour and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid. Langmuir, 2001, 17, 7742-7751.
35. Chang, C. M.; Bodmeier, R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J. Control. Release, 1997, 46, 215-222.
36. Gustafsson, J.; Ljusberg-Wahren, H.; Almgren, M.; Larsson, K. Submicron particles of reversed lipid phases in water stabilized by a Non-ionic amphiphilic polymer. Langmuir, 1997, 13, 6964-6971.
37. Salentinig, S.; Yaghmur, A.; Guillot, S.; Glatter, O. Preparation of highly concentrated nanostructured dispersions of controlled size. J. Colloid Interface Sci., 2008, 326, 211-220
38. Boyd, B.J. Characterisation of the drug release from cubosomes using the pressure ultrafiltration method. Int. J. Pharm., 2010, 260, 239-247.
39. Chung, H.C.; Kim. J.; Um, J.Y.; Kwon, I.C.; Jeong, S.Y. Selfassembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia, 2002, 45, 448-451.
40. Libster, D.; Aserin, A.; Wachtel, E.; Shoham, G.; Garti, N. An HII liquid crystal-based delivery system for cyclosporin A: Physical characterization. J. Colloid Interface Sci., 2007, 308, 514-524.
41. Libster, D.; Ishai, P. B.; Aserin, A.; Shoham, G.; and Garti, N. Molecular interaction in reverse hexagonal mesophae in the presence of cyclosporin A. Int. J. Pharm., 2009, 367, 115-126.
42. Sagalowicz, L.; Mezzenga, R.; Leser, M.E. Investigating reversed liquid crystalline mesophases. Curr. Opin. Colloid Interface Sci., 2006, 11, 224-229.
43. Turunen, T. M.; Urtti, A.; Paronen, P.; Audus, K. L.; Rytting, J. H. Effect of some penetration enhancers of epithelial membrane lipid domains: Evidence from fluorescence spectroscopy studies. Pharm. Res., 1994, 11, 288-294.
44. Lee, J.; Kellaway, I. W. Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-Ala2, D-Leu5] enkephalin from a cubic phase of glyceryl monooleate. Int. J. Pharm., 2000, 204, 137-144.
45. Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev. 41(3), 1297–1322 (2012).
46. Yaghmur A, Rappolt M. Chapter five – the micellar cubic Fd3m phase: recent advances in the structural characterization and potential applications. In: Advances in Planar Lipid Bilayers and Liposomes Aleš I, Chandrashekhar VK (Eds). Academic Press, 111–145 (2013).
47. Muir BW, Acharya DP, Kennedy DF et al. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxidebased nanoparticles. Biomaterials 33, 2723–2733 (2012).
48. Nilsson C, Barrios-Lopez B, Kallinen A et al. SPECT/ CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials 34, 8491–8503 (2013).
49. Lakshmi NM, Yalavarthi PR, Vadlamudi HC et al. Cubosomes as targeted drug delivery systems – a biopharmaceutical approach. Curr. Drug Discov. Technol. 11, 181–188 (2014).
50. Zhai J.; Fong C.; Tran N.; Drummond C. J. Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano 2019, 13, 6178–6206. GuoC.; Wang J.; Cao F.; Lee R. J.; Zhai G. Lyotropic Liquid Crystal Systems in Drug Delivery. Drug Discovery Today 2010, 15, 1032–1040.
51. Madheswaran T.; Kandasamy M.; Bose R. J.; Karuppagounder V. Current Potential and Challenges in the Advances of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Drug Discovery Today 2019, 24, 1405–1412.
52. Godlewska M.; Majkowska-Pilip A.; Stachurska A.; Biernat J. F.; Gaweł D.; Nazaruk E. Voltammetric and Biological Studies of Folate-Targeted Non-Lamellar Lipid Mesophases. Electrochim. Acta 2019, 299, 1–11.
53. Boyd, B. J.; Whittaker D. V.; Khoo S. M.; Davey G. Hexosomesformed from glycerate surfactants-formulation as a colloidal carrierfor irinotecan. Int. J. Pharm., 2006, 318,154-162.
54. Yaghmur A, Sartori B, Rappolt M. The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Phys. Chem. Chem. Phys. 2011; 13(8), 3115–3125.
55. Neto C, Aloisi G, Baglioni P et al. Imaging soft matter with the atomic force microscope: cubosomes and hexosomes. J. Phys. Chem. B 1999; 103(19), 3896–3899.
56. Turunen, T. M.; Urtti, A.; Paronen, P.; Audus, K. L.; Rytting, J. H.Effect of some penetration enhancers of epithelial membrane lipiddomains: Evidence from fluorescence spectroscopy studies. Pharm.Res., 1994, 11, 288-294.
57. Lee, J.; Kellaway, I. W. Combined effect of oleic acid and polyethyleneglycol 200 on buccal permeation of [D-Ala2, D-Leu5]enkephalin from a cubic phase of glyceryl monooleate. Int. J.Pharm., 2000, 204, 137-144.
58. Boyd, B. J.; Khoo, S.M.; Whittaker, D.V.; Davey, G.; ChristopherJ.H. Porter. A lipid-based liquid crystalline matrix that providessustained release and enhanced oral bioavailability for a modelpoorly water soluble drug in rats. Int. J. Pharm., 2007, 340, 52-60.