Volume : 10, Issue : 07, July – 2023

Title:

34.REVIEW OF APIGENIN LOADED ANTI-INFLAMMATORY NANOGEL

Authors :

Miss. Kiran Dinesh Nagote, Dr. Kiran D. Baviskar

Transdermal drug delivery systems provide an easy, reliable mechanism of administering drugs when rapid onset is not important. Transdermal drug delivery bypasses the enterohepatic circulation, thereby providing a more reliable clinical action. Nanogels are commonly used in sensing, diagnostics, and bioengineering, but they are also often used in drug delivery. Nanogels have benefits over conventional and macro-sized delivery systems because of their higher drug loading capacity, high stability, and improved contact time with the skin surface, which makes it more convenient as a transdermal drug delivery system. Nanogels composed of nanosize particles formed by physically or chemically cross linked polymer networks that swells in a good solvent. The nanogel systems have proven their potential to deliver drugs in controlled, constant and targetable mode. With the promising field of polymer sciences it has now become predestinated to prepare smart nano-system which can establish effectual for treatment, diagnosing as well as clinical trials progress.
Keywords: Anti-inflammatory, Nanogel, Apigenin.

Cite This Article:

Please cite this article in press Kiran Dinesh Nagote et al, Review Of Of Apigenin Loaded Anti-Inflammatory Nanogel, Indo Am. J. P. Sci, 2023; 10 (07).

Number of Downloads : 10

References:

1. Amarowicz R., Carle R., Dongowski G., Durazzo A., Galensa R., Kammerer D., Maiani G., Piskula M.K. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol. Nutr. Food Res. 2009;53:S151–S183. doi: 10.1002/mnfr.200700486
2. Cermak R., Durazzo A., Maiani G., Böhm V., Kammerer D.R., Carle R., Wiczkowski W., Piskula M.K., Galensa R. The influence of postharvest processing and storage of foodstuffs on the bioavailability of flavonoids and phenolic acids. Mol. Nutr. Food Res. 2009;53(Suppl. 2):S184–S193. doi: 10.1002/mnfr.200700444.
3. Falcone Ferreyra M.L., Rius S.P., Casati P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant. Sci. 2012;3:222. doi: 10.3389/fpls.2012.00222.
4. Kabera J.N., Semana E., Mussa A.R., He X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014;2:377–392.
5. Patel D., Shukla S., Gupta S. Apigenin and cancer chemoprevention: Progress, potential and promise (review) Int. J. Oncol. 2007;30:233–245. doi: 10.3892/ijo.30.1.233.
6. Miccadei S., Di Venere D., Cardinali A., Romano R., Durazzo A., Foddai M.S., Fraioli R., Mobarhan S., Maiani G. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr. Cancer. 2008;60:276–283. doi: 10.1080/01635580801891583.
7. Shukla S., Gupta S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010;27:962–978. doi: 10.1007/s11095-010-0089-7.
8. D’Evoli L., Morroni F., Lombardi-Boccia G., Lucarini M., Hrelia P., Cantelli-Forti G., Tarozzi A. Red chicory (Cichorium intybus L. cultivar) as a potential source of antioxidant anthocyanins for intestinal health. Oxid. Med. Cell. Longev. 2013;2013:704310.
9. Azzini E., Maiani G., Garaguso I., Polito A., Foddai M.S., Venneria E., Durazzo A., Intorre F., Palomba L., Rauseo M.L., et al. The potential health benefits of polyphenol-rich extracts from Cichorium intybus L. studied on Caco-2 cells model. Oxid. Med. Cell. Longev. 2016;2016 doi: 10.1155/2016/1594616.
10. Abenavoli L., Izzo A.A., Milić N., Cicala C., Santini A., Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018;32:2202–2213. doi: 10.1002/ptr.6171. Madunić J., Madunić I.V., Gajski G., Popić J., Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018;28:11–22. doi: 10.1016/j.canlet.2017.10.041.
11. Hostetler G.L., Ralston R.A., Schwartz S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017;8:423–435. doi: 10.3945/an.116.012948.
12. Thomas M.B. The Systematic Identification of Flavonoids. Springer Verlag; Berlin, Germany: 1970.
13. Dewick P.M. Chimica, Biosintesi e Bioattività delle Sostanze Naturali. Piccin; Roma, Italy: 2001.
14. Ornano L., Venditti A., Donno Y., Sanna C., Ballero M., Bianco A. Phytochemical analysis of non-volatile fraction of Artemisia caerulescens subsp. densiflora (Viv.) (Asteraceae), an endemic species of La Maddalena Archipelago (Sardinia–Italy) Nat. Prod. Res. 2016;30:920–925. doi: 10.1080/14786419.2015.1079189.
15. Venditti A., Maggi F., Vittori S., Papa F., Serrilli A.M., Di Cecco M., Bianco A. Antioxidant and α-glucosidase inhibitory activities of Achillea tenorii. Pharm. Biol. 2015;53:1505–1510. doi: 10.3109/13880209.2014.991833.
16. Venditti A., Guarcini L., Bianco A., Rosselli S., Bruno M., Senatore F. Phytochemical analysis of Achillea ligustica all. from Lipari Island (Aeolian islands) Nat. Prod. Res. 2016;30:912–919. doi: 10.1080/14786419.2015.1079188.
17. Sharifi-Rad M., Nazaruk J., Polito L., Morais-Braga M.F.B., Rocha J.E., Coutinho H.D.M., Salehi B., Tabanelli G., Montanari C., Del Mar Contreras M., et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018;215:76–88. doi: 10.1016/j.micres.2018.06.010.
18. Venditti A., Frezza C., Sciubba F., Serafini M., Bianco A., Cianfaglione K., Maggi F. Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum macrophyllum (Waldst. et Kit.) Schultz Bip. Ind. Crop. Prod. 2018;118:225–235. doi: 10.1016/j.indcrop.2018.03.056.
19. Venditti A., Frezza C., Guarcini L., Foddai S., Serafini M., Bianco A. Phytochemical study of a species with ethnopharmacological interest: Sideritis romana L. Eur. J. Med. Plants. 2016;12:1–9. doi: 10.9734/EJMP/2016/23809
20. Venditti A., Frezza C., Trancanella E., Zadeh S.M.M., Foddai S., Sciubba F., Bianco A. A new natural neo-clerodane from Teucrium polium L. collected in Northern Iran. Ind. Crop. Prod. 2017;97:632–638. doi: 10.1016/j.indcrop.2017.01.010.
21. Venditti A. Secondary metabolites from Teucrium polium L. collected in Southern Iran. AJMAP. 2017;3:108–123.
22. Venditti A., Frezza C., Foddai S., Serafini M., Bianco A. A rare bis-rhamnopyranosyl-aromadendrin derivative and other flavonoids from the flowers of Genista cilentina Vals. an endemic species of Southern Italy. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.02.012.
23. Fatma W., Taufeeq H.M., Shaida W.A., Rahman W. Biflavanoids from Juniperus macropoda Boiss and Juniperus phoenicea Linn. (Cupressaceae) Indian J. Chem. B Org. 1979;17:193–194.
24. Stassi V., Verykokidou E., Loukis A., Harvala C. Polyphenolic compounds from the leaves of Juniperus oxycedrus L. subsp. macrocarpa (Sm.) Ball. Pharm. Acta Helv. 1998;72:311–312. doi: 10.1016/S0031-6865(97)00037-X.
25. Alquasoumi S.I., Farraj A.I., Abdel-Kader M.S. Study of the hepatoprotective effect of Juniperus phoenicea constituents. Pak. J. Pharm. Sci. 2013;26:999–1008.
26. Venditti A., Maggi F., Quassinti L., Bramucci M., Lupidi G., Ornano L., Bianco A. Bioactive Constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Chem. Biodivers. 2018;15:e1800148. doi: 10.1002/cbdv.201800148.
27. Forkmann G. Flavonoids as Flower Pigments: The Formation of the Natural Spectrum and its Extension by Genetic Engineering. Plant. Breed. 1991;106:1–26. doi: 10.1111/j.1439-0523.1991.tb00474.x.
28. Herrmann K.M. The shikimate pathway as an entry to aromatic secondary metabolism. Plant. Physiol. 1995;107:7–12. doi: 10.1104/pp.107.1.7.
29. Martens S., Forkmann G., Matern U., Lukacin R. Cloning of parsley flavone synthase I. Phytochemistry. 2001;58:43–46. doi: 10.1016/S0031-9422(01)00191-1.

</div8