Volume : 10, Issue : 06, JUne – 2023

Title:

03.A REVIEW ON NAPHTHOQUINONE DERIVATIVES AS POTENTIAL ANTIMICROBIAL AGENTS

Authors :

Safi Azama, Rahul Pandeya*, Anshuman , Raushan Kumar, Divyam Raj, Vaibhav, Abhinav Kumar

Abstract :

Naphthoquinones are common phenolic substances found in nature. They are by products of secondary metabolism in high plants as well as bacterial and fungal processes. The three substances that are most common are juglone, lawsone, and plumbagin. In addition to being cytotoxic, naphthoquinones also exhibit substantial antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic effects. Numerous 1,4-naphthoquinones have been isolated from natural resources over the past few decades, and numerous derivatives of naphthoquinones with various structural motifs have been synthesised and tested for antimicrobial activity. Researchers are looking for new naphthoquinone derivatives with promise for clinical efficacy in an effort to find alternative effective therapeutic molecules without severe side effects..
Keywords: Naphthoquinone, Antimicrobials

Cite This Article:

Please cite this article in press Rahul Pandeyet al, A Review On Naphthoquinone Derivatives As Potential Antimicrobial Agents., Indo Am. J. P. Sci, 2023; 10 (06).

Number of Downloads : 10

References:

1. Ma, S., & Ma, S. (2012). The Development of FtsZ Inhibitors as Potential Antibacterial Agents. In ChemMedChem (Vol. 7, Issue 7, pp. 1161–1172). Wiley.
2. Fernandode Carvalhoda,S.; Vitor Francisco, F. Natural Naphthoquinones with Great Importance in Medicinal Chemistry.Curr.Org.Synth.2016,13,334–371.
3. Rho,Y.S.; Kim,S.Y.; Kim,W.J.; Yun,Y.K.; Sin,H.S.; Yoo, D.J. Convenient Syntheses of Daunomycinone7-D-Glucuronides and Doxorubicinone-7-D-Glucuronides. Synth.Commun. 2004,34,3497–3511.
4. Ma,W.-D.; Zou,Y.-P.; Wang,P.; Yao,X.-H.; Sun,Y.; Duan,M.-H.; Fu,Y.-J.; Yu,B. Chimaphilin induces apoptosisin human breast cancer MCF-7cells through a ROS- mediated mitochondrial pathway. FoodChem.Toxicol.2014, 70, 1–8.
5. Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones—A review. RSCAdv. 2015, 5, 20309–20338.
6. Novais, J.S.; Campos,V.R.; Silva,A.C.J.A.; deSouza, M.C.B.V.; Ferreira,V.F.; Keller,V.G.L.; Ferreira,M.O.; Dias,F.R.F.; Vitorino,M.I.; Sathler,P.C.; etal. Synthesis and antimicrobial evaluation of promising 7-arylamino-5,8-dioxo-5,8- dihydroisoquinoline-4-carboxylates and their halogenated amino compounds for treating Gram-negative bacterial infections. RSCAdv.2017, 7,18311–18320.
7. Manickam,M.; Boggu,P.R.; Cho,J.; Nam,Y.J.; Lee,S.J.; Jung,S.-H. Investigation of chemical reactivity of 2-alkoxy-1, 4-naphthoquinones and their anticancer activity. Bioorg.Med.Chem.Lett.2018, 28,2023–2028.
8. Pullella,G.A.; Wild,D.A.; Nealon,G.L.; Elyashberg,M.; Piggott,M.J. What Is the Structure of the Antitubercular Natural Product Eucapsitrione? J.Org.Chem.2017,82,7287–7299.
9. Lanfranchi,D.A.; Cesar-Rodo,E.; Bertrand,B.; Huang,H.H.; Day,L.; Johann,L.; Elhabiri,M.; Becker,K.; Williams,D.L.; Davioud-Charvet,E. Synthesis and biological evaluation of 1,4-naphthoquinones and quinoline-5,8-diones as antimalarial and schistosomicidal agents. Org.Biomol.Chem.2012, 10, 6375–6387.
10. Lara,L.S.; Moreira,C.S.; Calvet,C.M.; Lechuga,G.C.; Souza,R.S.; Bourguignon,S.C.; Ferreira,V.F.; Rocha,D.; Pereira,M.C.S. Efficacy of 2-hydroxy-3-phenyl sulfanyl methyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzidi screte type units: Identification of a promising hit compound. Eur.J.Med.Chem.2018,144, 572–581.
11. Klaus,V.; Hartmann,T.; Gambini,J.; Graf,P.; Stahl,W.; Hartwig,A.; Klotz,L.-O. 1,4- Naphthoquinones as inducers of oxidative damage and stress signalling in HaCaThumankeratinocytes.Arch.Biochem.Biophys. 2010,496,93–100.
12. Pauli, F. P., Freitas, C. S., Pereira, P. R., Magalhães, A., de Carvalho da Silva, F., Paschoalin, V. M. F., & Ferreira, V. F. (2023). Exploring the Antimicrobial and Antitumoral Activities of Naphthoquinone-Grafted Chitosans. In Polymers (Vol. 15, Issue 6, p. 1430). MDPI AG. https://doi.org/10.3390/polym15061430
13. Liu, Z., Shen, Z., Xiang, S., Sun, Y., Cui, J., & Jia, J. (2022). Evaluation of 1,4- naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies.In Frontiers of Environmental Science & Engineering (Vol. 17, Issue 3). Springer Science and Business Media LLC. https://doi.org/10.1007/s11783-023-1631- 2
14. Ma, J., Todd, M., van de Sande, W. W. J., & Biersack, B. (2023). Antifungal Activity of Natural Naphthoquinones and Anthraquinones against Madurella mycetomatis. In Chemistry & Biodiversity. Wiley. https://doi.org/10.1002/cbdv.202300151
15. Oliveira, V. da S., Silva, C. C., de Freitas Oliveira, J. W., da Silva, M. de S., Ferreira,P. G., da Siva, F. de C., Ferreira, V. F., Barbosa, E. G., Barbosa, C. G., Moraes, C. B., Freitas-Junior, L. H. G. de, Converti, A., & Lima, Á. A. N. de. (2023). The evaluation of in vitro antichagasic and anti-SARS-CoV-2 potential of inclusion complexes of β- and methyl-β-cyclodextrin with naphthoquinone. In Journal of Drug Delivery Science and Technology (Vol. 81, p. 104229). Elsevier BV. https://doi.org/10.1016/j.jddst.2023.104229
16. Costa Souza, R. M., Montenegro Pimentel, L. M. L., Ferreira, L. K. M., Pereira, V. R. A., Santos, A. C. D. S., Dantas, W. M., Silva, C. J. O., De Medeiros Brito, R. M., Andrade, J. L., De Andrade-Neto, V. F., Fujiwara, R. T., Bueno, L. L., Silva Junior,V. A., Pena, L., Camara, C. A., Rathi, B., & De Oliveira, R. N. (2023). Biological activity of 1,2,3-triazole-2-amino-1,4-naphthoquinone derivatives and their evaluation as therapeutic strategy for malaria control. In European Journal of Medicinal Chemistry
(Vol. 255, p. 115400). Elsevier BV. https://doi.org/10.1016/j.ejmech.2023.115400
17. Paul, P., Sarkar, S., Dastidar, D. G., Shukla, A., Das, S., Chatterjee, S., Chakraborty, P., & Tribedi, P. (2023). 1, 4-naphthoquinone efficiently facilitates the disintegration of pre-existing biofilm of Staphylococcus aureus through eDNA intercalation. In Folia Microbiologica. Springer Science and Business Media LLC. https://doi.org/10.1007/s12223-023-01053-z
18. Broni, E., Striegel, A., Ashley, C., Sakyi, P. O., Peracha, S., Velazquez, M., Bebla, K., Sodhi, M., Kwofie, S. K., Ademokunwa, A., Khan, S., & Miller, W. A., III. (2023). Molecular Docking and Dynamics Simulation Studies Predict Potential Anti- ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. In International Journal of Molecular Sciences (Vol. 24, Issue 7, p. 6795). MDPI AG. https://doi.org/10.3390/ijms2407679