Volume : 10, Issue : 06, June – 2023

Title:

05.A RECENT UPDATES IN TOPICAL APPLICATIONS OF ANTIFUNGAL AGENTS: A REFERENCE TO LIPID- BASED FORMULATIONS

Authors :

Mr. Amit P. Sinhal, Dr. R. D. Wagh.

Abstract :

Clinically available antifungals have a restricted range of efficacy, substantial toxicity, and emerging resistance. Because fungi and the humans who host them are both eukaryotic, it has been difficult to identify precise targets for antifungals. Novel antifungals include first-in-class compounds, new structures for a known target, formulation changes to antifungals already on the market, and repurposed medications. The authorized antifungal drugs, and 39; mechanisms of action, pharmacological profiles, and susceptibility to certain fungi were assessed. The field is paying more and more attention to membrane-interacting peptides and aromatherapy. Antifungal antibodies are making progress in clinical studies, making immunotherapy another intriguing therapeutic approach. New antifungal therapeutic targets are also being found, enabling the development of innovative, potentially effective drugs that could solve the resistance problem. Due to their unique structural and functional characteristics, advanced topical carriers get beyond biopharmaceutical issues with traditional drug delivery vehicles, such as poor retention and low bioavailability.
Topical nanocarriers containing anti-fungal pills have improved healing responses with little toxicity, in line with literature evidence. Topical antifungal medications are frequently delivered via nanocarriers such as solid- lipid nanoparticles, microemulsions, liposomes, niosomes, microsponges, nano gel, nanoemulsions, micelles, and so on. This review offers an overview of modern-day tendencies in new topical providers used to enhance the therapeutic efficacy of antifungal medicines.
Keywords: antifungal, strong-lipid nanoparticles, microemulsions, liposomes, niosomes, microsponge, nanogel, nanoemulsions, micelles, and many others.

Cite This Article:

Please cite this article in press Amit P. Sinhal et al, A Recent Updates In Topical Applications Of Antifungal Agents: A Reference To Lipid- Based Formulations., Indo Am. J. P. Sci, 2023; 10 (06).

Number of Downloads : 10

References:

1. Du H., Bing J., Hu T.R., Ennis C.L., Nobile C.J., Huang G.H. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoSPathog. 2020; 16:e1008921.
2. Chowdhary A., Tarai B., Singh A., Sharma A. Multidrug-Resistant Candida auris Infections in Critically Ill Coronavirus Disease Patients, India, April–July 2020. Emerg. Infect. Dis. 2020; 26:2694– 2696.
3. Boral H., Metin B., Dogen A., Seyedmousavi S., Ilkit M. Overview of selected virulence attributes in Aspergillus fumigants, Candida albicans, Cryptococcus neoformans, Trichophytonrubrum, and Exophialadermatitidis. Fungal Genet. Biol. 2018; 111:92–107.
4. Magdum C, Naikwade N, Shah R. Preparation and Evaluation of Fluconazole Topical Microemulsion. Journal of Pharmacy Research, 3:557-561, 2009.
5. Banerjee M, Ghosh A, Basak S. Comparative evaluation of efficacy and safety of topical fluconazole angclotrimazolein the treatment of tineacorporis. Journal of Pakistan Association of Dermatologists, 22(4):342-349, 2012.
6. Gungor S, Erdal M, Aksu B. New formulation strategies in topical antifungal therapy. Journal of Cosmetics, Dermatological Sciences, and Applications, 3:56-65, 2013.
7. Silva H, Luz G, Satake C. Surfactant-based Transdermal System for Fluconazole Skin Delivery. J Nanomed Nanotechnol, 5(5):1- 10, 2014.
8. Naik A, Kalia Y N, Guy R H. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm SciTechnolo Today, 3:318-326, 2000.
9. Magdum C, Naikwade N, Shah R. Preparation and Evaluation of Fluconazole Topical Microemulsion. Journal of Pharmacy Research, 3:557-561, 2009.
10. .Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: An overview of the evidence. Adv Wound Care. 2015; 4: 373–381.
11. Kravvas G, Veitch D, Al-Niaimi F. The increasing relevance of biofilms in common dermatological conditions. J Dermatolog Treat. 2018; 29: 202–207.
12. Van Dijck P, Sjollema J, Cammue BPA et al. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microb Cell. 2018; 5: 300–326.
13. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010; 8: 623–633.
14. Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: Recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol. 2002; 47: 629–631.
15. Kowalski CH, Kerkaert JD, Liu KW et al. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat Microbiol. 2019; 4: 2430–2441.
16. Tragiannidis A, Bisping G, Koehler G, Groll AH. 2010. Mini review: Malassezia infections in immune compromised patients. Mycoses 53:187–195.
17. Samarei R, Gharebaghi N, Zayer S. 2017. Evaluation of 30 cases of mucormycosis at a university hospital in Iran. Mycoses.
18. Rojas FD, Sosa MDLA, Fernandez MS, Cattana ME, Cordoba SB, Giusiano GE. 2014. Antifungal susceptibility of Malassezia furfur, Malasseziasympodialis, and Malasseziaglobosa to azole drugs and amphotericin B evaluated using a broth microdilution method. Med Mycol 52:641–646.
19. Velegraki A, Alexopoulos EC, Kritikou S, Gaitanis G. 2004. Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species to the new triazole posaconazole and to six established antifungal agents by a modified NCCLS M27-A2 microdilution method and Etest. J ClinMicrobiol 42:3589–3593.
20. Miranda KC, de Araujo CR, Costa CR, Passos XS, de Fatima LisboaFernandes O, do Rosario Rodrigues Silva M. 2007. Antifungal activities of azole agents against the Malassezia species. Int J Antimicrob Agents 29:281–284.
21. Bellenberg S., Huynh D., Poetsch A., Sand W., Vera M. Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillusferrooxidans biofilm cells on pyrite. Front. Microbiol. 2019; 10:592.
22. Aguilera A., Souza-Egipsy V., Martín-Uriz P.S., Amils R. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat. Toxicol. 2008; 88:257–266.
23. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015; 69:71–92.
24. Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012; 3:315–322.
25. Adler-Moore JP, Proffitt RT. Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res 1993; 3: 429–50.
26. Odds FC. Antifungal agents: their diversity and increasing sophistication. Mycologist. 2003 May 1;17(2):51-55.
27. Jones T. Treatment of dermatomycoses with topically applied allylamines: naftifine and terbinafine. J Dermatol Treat 1990; 1:29-32
28. Ernest JM. Topical antifungal agents. Obstet Gynecol Clin North Am 1992; 19:587-607.
29. Katz AS. Topical antifungal agents. Curr ProblDermatol2000; 12:226-229.
30. Bohn M, Kraemer K. The dermatopharmacologic profile of ciclopirox 8% nail lacquer. J Am Podiat Med Assn 2000; 90:491-494.
31. E.B. Souto, S.A. Wissing, C.M. Barbosa, R.H. Muller, Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery, Int. J. Pharm. 278 (1) (2004) 71– 77.
32. S. El-Housiny, M.A. Shams Eldeen, Y.A. El-Attar, H.A. Salem, D. Attia, E.R. Bendas, M.A. El- Nabarawi, Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasisvesicolor: formulation and clinical study, Drug Deliv. 25 (1) (2018 Jan 1) 78–90.
33. E.B. Souto, R.H. Müller, The use of SLN® and NLC® as topical particulate carriers for imidazole antifungal agents, Die Pharmazie-An Int J Pharmaceutical Sci 61 (5) (2006 May 1) 431–437.
34. Z. Karami, M. Hamidi, Cubosomes: remarkable drug delivery potential, Drug Discov. Today 21 (5) (2016 May 1) 789–801.
35. D.B. Vieira, A.M. Carmona-Ribeiro, Cationic lipids and surfactants as antifungal agents: mode of action, J. Antimicrob. Chemother. 58 (4) (2006 Aug 2) 760–767.
36. D.I.J. Morrow, P.A. McCarron, A.D. Woolfson, R.F. Donnely, Innovative strategies for enhancing topical and transdermal drug delivery, Open Drug Deliv. J. 1 (2007) 36–59.
37. H.E. Junginger, H.E. Hofland, J.A. Bouwstra, Liposomes and niosomes interactions with human skin, Cosmet. Toilet. 106 (1991) 45–50.
38. F. Fernandez-Campos, B.C. Naveros, O.L. Serrano, Evaluation of novel nystatinnanoemulsion for skin candidosis infections, Mycoses 56 (1) (2013) 70–81.
39. M.J. Choi, H.I. Maibach, Liposomes and niosomes as drug delivery systems, Skin Pharmacol. Physiol. 18 (No. 5) (2005) 209–219.
40. M. Gupta, B. Vaidya, N. Mishra, S.P. Vyas, Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery, Artif. Cells Blood Substit. Immobil. Biotechno. 36 (No. 6) (2011) 376–834.
41. H.S. Barakat, I.A. Darwish, L.K. El-Khordagui, N.M. Khalafallah, Development of naftifine hydrochloride alcohol-free niosomes gel, Drug Dev. Ind. Pharm. 35 (No. 5) (2009) 631–637.
42. D.I.J. Morrow, P.A. McCarron, A.D. Woolfson, R.F. Donnely, Innovative strategies for enhancing topical and transdermal drug delivery, Open Drug Deliv. J. 1 (2007) 36–59.
43. M. Gupta, B. Vaidya, N. Mishra, S.P. Vyas, Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery, Artif, Cells Blood Substit. Immobil. Biotechno. 36 (No. 6) (2011) 376–834.
44. H.S. Barakat, I.A. Darwish, L.K. El-Khordagui, N.M. Khalafallah, Development of naftifine hydrochloride alcohol-free niosome gel, Drug Dev. Ind. Pharm. 35 (5) (2009 May 1) 631–637.
45. H.S. Barakat, I.A. Darwish, L.K. El-Khordagui, N.M. Khalafallah, Development of naftifine hydrochloride alcohol-free niosomes gel, Drug Dev. Ind. Pharm. 35 (No. 5) (2009) 631–637.
46. D. Liu, P. Ning, R. Li, Establishing pairwise keys in distributed sensor networks, ACM Trans. Inf. Syst. Secur. 8 (1) (2005 Feb 1) 41–77.
47. M. Schafer-Korting, H.C. Korting, E. Ponce-Poschl, Liposomal tretinoin for uncomplicated acne vulgaris, Clin. Invest. 72 (12) (1994 Dec) 1086–1091.
48. M. Brisaert, M. Gabriel’s, V. Matthijs, et al., Liposomes with tretinoin: a physical andchemical evaluation, J. Pharmaceut. Biomed. Anal. 26 (5-6) (2001 Dec) 909–917.
49. P.R. Patel, H.H. Patel, H.A. Baria, Formulation and evaluation of carbopol gel containing Liposomes of ketoconazole, Int J Drug Deliv Techno 1 (2009) 42–45.
50. M. Schaller, H. Preidel, E. Januschke, H.C. Korting, Light and electron microscopic findings in a model of human cutaneous candidosis based on reconstructed human epidermis following the topical application of different econazole formulations, Drug Target. 6 (No. 5) (1999) 361–372.
51. D.D. Verma, S. Verma, G. Blume, A. Fahr, Particle size of liposomes influences dermal delivery of substances into skin, International J Pharmaceutics 258 (1-2) (2003 Jun 4) 141–151.
52. K.C. Ashara, J.S. Paun, M.M. Soniwala, J.R. Chavda, Microemulgel of voriconazole: an unfathomable protection to counter fungal contagiousness, Folia Med. 59 (4) (2017 Dec 20) 461–471.
53. H.R. Neubert, Potentials of new nanocarriers for dermal and transdermal drug delivery, European J Pharmacy Biopharmacy 77 (No. 1) (2011) 1–2.
54. A. Kogan, N. Garti, Microemulsions as transdermal drug delivery vehicles, Adv. Colloid Interface Sci. 123–126 (2006) 369–385.
55. M.R. Patel, R.B. Patel, J.R. Parikh, Effect of formulation components on the in-vitro permeation of microemulsion drug delivery system of fluconazole, AAPS PharmSciTech 10 (3) (2009) 917–923.
56. M. Kreilgaard, Influence of microemulsions on cutaneous drug delivery, Adv. Drug Deliv. Rev. 54 (Suppl 1) (2002) S77-98.
57. H.M. El Laithy, K.M. El- Shaboury, The development of cutinalipogels and gel microemulsion for topical administration of fluconazole, AAPS PharmSciTech 3(2002) E35.
58. S.A. Radwan, A.N. ElMeshad, R.A. Shoukri, Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation, Drug Dev. Ind. Pharm. 43 (8) (2017Aug3) 1351–1365.
59. B. Kumari, K. Kesavan, Effect of chitosan coating on microemulsion for effective dermal clotrimazole delivery, Pharmaceut. Dev. Technol. 22 (4) (2017 May 19) 617–626.
60. C. Salerno, A.M. Carlucci, C. Bregni, Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms, AAPS PharmSciTech 11 (2010) 986–993.
61. C. Salerno, A.M. Carlucci, C. Bregni, Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms, AAPS PharmSciTech 11 (2010) 986–993.
62. M.R. Patel, B.R. Patel, R.J. Parikh, K.K. Bhatt, B.A. Solanki, Investigating the effectof vehicle on in- vitro skin permeation of ketoconazole applied in O/W microemulsions, Acta Pharm Sci 52 (2010) 65– 87.
63. M.R. Patel, R.B. Patel, J.R. Parikh, A.B. Solanki, B.G. Patel, Investigating effect of microemulsion com- ponents: In vitro permeation of ketoconazole, Pharmaceut. Dev. Technol. 16 (No. 3) (2011) 250– 258.
64. E.A. Lee, P. Balakrishnan, C.K. Song, J.H. Choi, G.Y. Noh, G.C. Park, et al., Microemulsion- based hydrogel formulation of itraconazole for topical delivery, J Pharm Investig 40 (2010) 305–311.
65. A. Chudasama, V. Patel, M. Nivsarkar, K. Vasu, C. Shishoo, Investigation of microemulsion system for transdermal delivery of itraconazole, “J. Adv. Pharm.Technol. Research”” (JAPTR)” 2 (2011) 30– 38.
66. Shahid M, Hussain A, Khan AA, Ramzan M, Alaofi AL, Alanazi AM, Alanazi MM, Rauf MA. Ketoconazole-Loaded Cationic Nanoemulsion: In Vitro-Ex Vivo-In Vivo Evaluations to Control Cutaneous Fungal Infections. ACS Omega. 2022 May 30;7(23):20267-20279.
67. G.N. El- Hadidy, H.K. Ibrahim, M.I. Mohamed, M.F. El- Milligi, Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation, Drug Dev. Ind. Pharm. 38 (2012) 64–72.
68. Gou S, Monod M, Salomon D, Kalia YN. Simultaneous Delivery of Econazole, Terbinafine and Amorolfine with Improved Cutaneous Bioavailability: A Novel Micelle-Based Antifungal “Tri- Therapy”. Pharmaceutics. 2022 Jan 24;14(2):271.
69. Bachhav YG, Mondon K, Kalia YN, Gurny R, Möller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. Journal of controlled release. 2011 Jul 30;153(2):126-32.
70. Si Gou, Michel Monod, Denis Salomon, Yogeshvar N. Kalia. Simultaneous Delivery of Econazole, Terbinafine and Amorolfine with Improved Cutaneous Bioavailability: A Novel Micelle-Based Antifungal “Tri-Therapy”.Pharmaceutics. 2022 Feb; 14(2): 271.
71. Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS Pharm SciTech. 2009 Mar; 10:289- 96.
72. Hassan SU, Khalid I, Hussain L, Barkat K, Khan IU. Development and Evaluation of pH-Responsive Pluronic F 127 Co-Poly- (Acrylic Acid) Biodegradable Nanogels for Topical Delivery of Terbinafine HCL. Dose-Response. 2022 Apr 23; 20(2):15593258221095977.