Volume : 10, Issue : 06, June – 2023

Title:

37.DEVELOPMENT, OPTIMIZATION AND CHARACTERIZATION OF FLURBIPROFEN NANOPARTICLES

Authors :

Shaik Rizwana, Badri Nath

Abstract :

The active pharmaceutical ingredient Flurbiprofen was evaluated for its Organoleptic properties and solubility. The results obtained were satisfactory. Flurbiprofen nanoparticles were prepared by emulsion -droplet coalescence method and the polymer concentrations were optimized by various trials In the present study Chitosan nanoparticles containing Flurbiprofen was prepared. The effect of increase in Chitosan concentration on various parameters like particle size and invitro release profile were studied. The Flurbiprofen nanoparticles were formulated and evaluated for its invitro drug release profile. The results showed that the in vitro drug release for FNP1, FNP2, FNP3, FNP4 and FNP5 were found to be 99.45± 0.31, 99.41± 0.17, 99.45± 0.19, 73.65± 0.15 and 69.76± 0.23respectively at the end of 24hr. Based on the drug content,entrapment efficiency,particle size,zeta potential and in vitro drug release profile of Flurbiprofen nanoparticles formulations (FNP1-FNP5) formulation FNP3 was selected as the best formulation in which the particle size was 271.4nm. The in vitro % drug release of FNP3 formulation was 99.45± 0.19 at the end of 24 hr and it was found to be suitable formulation to manage the condition of rheumatoid arthritis. Hence it can be concluded that the newly formulated controlled release nanoparticulate drug delivery systems of Flurbiprofen may be ideal and effective in the management of pain due to arthritis by allowing the drug to release continuously for 24 hr.
Key words: Formulation, Optimization, Flurbiprofen, Nanoparticle

Cite This Article:

Please cite this article in press Shaik Rizwana et al, Development, Optimization And Characterization Of Flurbiprofen Nanoparticles., Indo Am. J. P. Sci, 2023; 10 (06).

Number of Downloads : 10

References:

1. Gaur M., Misra C., Yadav A.B., Swaroop S., Maolmhuaidh F., Bechelany M., Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials. 2021;14:5978. doi: 10.3390/ma14205978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
2. Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. [CrossRef] [Google Scholar]
3. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Barhoum A., El-Maghrabi H.H., Nada A.A., Sayegh S., Roualdes S., Renard A., Iatsunskyi I., Coy E., Bechelany M. Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles. J. Mater. Chem. A. 2021;9:17724–17739. doi: 10.1039/d1ta03704h. [CrossRef] [Google Scholar]
5. Prasad S., Kumar V., Kirubanandam S., Barhoum A. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Engineered nanomaterials: Nanofabrication and surface functionalization; pp. 305–340. [CrossRef] [Google Scholar]
6. Cremers V., Rampelberg G., Barhoum A., Walters P., Claes N., de Oliveira T.M., Van Assche G., Bals S., Dendooven J., Detavernier C. Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surf. Coat. Technol. 2018;349:1032–1041. doi: 10.1016/j.surfcoat.2018.06.048. [CrossRef] [Google Scholar]
7. Hammani S., Moulai-Mostefa N., Samyn P., Bechelany M., Dufresne A., Barhoum A. Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials. 2020;13:926. doi: 10.3390/ma13040926. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Barhoum A., Van Lokeren L., Rahier H., Dufresne A., Van Assche G. Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J. Mater. Sci. 2015;50:7908–7918. doi: 10.1007/s10853-015-9327-z. [CrossRef] [Google Scholar]
9. Rehan M., Barhoum A., Khattab T., Gätjen L., Wilken R. Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles. Cellulose. 2019;26:5437–5453. doi: 10.1007/s10570-019-02497-8. [CrossRef] [Google Scholar]
10. Abdel-Haleem F.M., Salah A., Rizk M.S., Moustafa H., Bechelany M., Barhoum A. Carbon-based Nanosensors for Salicylate Determination in Pharmaceutical Preparations. Electroanalysis. 2019;31:778–789. doi: 10.1002/elan.201800728. [CrossRef] [Google Scholar]
11. Abdel-Haleem F., Mahmoud S., Abdel-Ghani N., El Nashar R., Bechelany M., Barhoum A. Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors. 2021;21:3150. doi: 10.3390/s21093150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Abdel-Haleem F.M., Gamal E., Rizk M.S., Madbouly A., El Nashar R.M., Anis B., Elnabawy H.M., Khalil A.S.G., Barhoum A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021;9:648704. doi: 10.3389/fbioe.2021.648704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
13. Parikha Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
14. Rasouli R., Barhoum A., Uludag H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomater. Sci. 2018;6:1312–1338. doi: 10.1039/C8BM00021B. [PubMed] [CrossRef] [Google Scholar]
15. Rasouli R., Barhoum A., Bechelany M., Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2018;19:e1800256. doi: 10.1002/mabi.201800256. [PubMed] [CrossRef] [Google Scholar]
16. Singh K.R., Nayak V., Singh J., Singh A.K., Singh R.P. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021;11:24722–24746. doi: 10.1039/D1RA04273D. [CrossRef] [Google Scholar]
17. Tan K.X., Barhoum A., Pan S., Danquah M.K. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Risks and toxicity of nanoparticles and nanostructured materials; pp. 121–139. [CrossRef] [Google Scholar]

</div8