Volume : 10, Issue : 09, September – 2023

Title:

08. HYPERLIPIDEMIA: INFLAMMATORY PATHWAY AND PHYTOCHEMICAL APPROACH

Authors :

Sudha R*, Geetha G, Niraimathi K.L

Abstract :

Hyperlipidemic condition serve as a major risk factor for cardiovascular events as they contribute to free fatty acid circulation. Co-occurrence of obesity, hyperglycemia and cardiovascular disease is the major health concern resulting in increased mortality. It activates JNK pathway interfere with RAAS pathway contributing to cardiovascular complications. Tumor necrosis factor α (TNF α), interleukins (IL-1, IL-6, IL-18) and C-Reactive Protein (CRP) are the most important inflammatory cytokines implicated in hyperlipidemic condition which accelerates systemic inflammation. Elevated level of TNF α remains the independent factor for cardiovascular mortality. Chronic inflammation is the hall mark of cardiovascular progress which results from elevated concentration of CRP. CRP promotes endothelial dysfunction and has been recognized as key factor for cardiovascular. Further it enhances the production of IL-6 which worsens the condition by increasing triglyceride concentration. Oxidative stress in hyperlipidemia induces IL-18 concentration which results in atherosclerotic plaque and arterial stiffness.
Medicinal plants are rich in antioxidants and metabolites act as source to inhibit the cholesterol synthesis and reduced inflammation with their antioxidant properties. This paper discuss the antihyperlipidemic properties of fenugreek, cumin and fennel based on previous research studies.
Keywords: Antioxidants, Antihyperlipidemic Cardiovascular events, Inflammation, Obesity.

Cite This Article:

Please cite this article in press Sudha R et al, Hyperlipidemia: Inflammatory Pathway And Phytochemical Approach, Indo Am. J. P. Sci, 2023; 10 (09).

Number of Downloads : 10

References:

1. YogitaRochlani, Naga VenkataPothineni, SwathiKovelamudi and Jawahar L. Mehta. Insulin resistance syndrome: pathophysiology, management, and modulation by natural compounds.Therapeutic Advances in Cardiovascular Disease, 2017 Aug; 11(8): 215–225. DOI: 10.1177/1753944717711379; PMID: 28639538.
2. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. American Journal of Physiology- Cell Physiology, 2007; 292(1): 82–97.
3. Dheepthi M, Mohamed Afreeth SU, Suba Dhanisha S, Sowmya C. A review on dominating diabetic complication & their management. European Journal of Pharmaceutical & Medical Research, 2021;8(5):269-277.
4. Guoyao Wu, Cynthia J. Meininger. Nitric oxide and vascular insulin resistance. BioFactors (Oxford, England),2009;35(1):21–7.
5. Imre Csige, Dora Ujvarosy, Zoltan Szabo, Istvan Lorincz, Gyorgy Paragh, Mariann Harangi, Sandor Somod. The Impact of Obesity on the Cardiovascular System. Journal of Diabetes Research, 2018. Article ID 3407306. DOI:10.1155/2018/3407306.
6. Ying-yi Luanand Yong-ming Yao. The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases.Frontaries Immunology, 2018. DOI: 10.3389/fimmu.2018.01302; PMID: 29951057.
7. Amit Kumar Shrivastava, ArunRaizada, Sanjeev Kumar Singh. C reactive protein, inflammation and coronary artery disease. The Egyptian Heart Journal, 2015; 67(2);89-97.
8. PengliBao, Geli Liu and Ying Wei. Association between IL-6 and related risk factors of Insulin resistance syndrome and cardiovascular disease in young rats. International Journal of Clinical and Experimental Medicine, 2015; 8(8): 13491–13499. PMCID: PMC4612971.
9. Bente K. Pedersen, Mark A. Febbraio. Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. Journal of Applied Physiology, 2007;102: 814 – 819. DOI:10.1152/japplphysiol.01208.2006; PMID: 17068210.
10. Joseph Hung, Brendan M. McQuillan, Caroline M. L. Chapman, Peter L. Thompsonand John P. Beilby. Elevated Interleukin-18 Levels Are Associated With the Insulin resistance syndrome Independent of Obesity and Insulin Resistance; Arteriosclerosis, Thrombosis, and Vascular Biology, 2005 ;25:1268–1273. DOI:10.1161/01.ATV.0000163843.70369.12; PMID: 15790931.
11. Priscilla Pereira de Toledo Espindola, Paola dos Santos da Rocha,Carlos Alexandre Carollo,Wanderlei Onofre Schmitz,Zefa Valdivina Pereira,Maria do Carmo Vieira,Edson Lucas dos Santos, Kely de Picoli Souza. Antioxidant and Antihyperlipidemic Effects of Campomanesia adamantium O. Berg Root. Oxid Med Cell Longev. 2016; 2016: 7910340. DOI: 10.1155/2016/7910340; PMID: 27493705
12. Devesh Tewari, Artur Jóźwik, Małgorzata Łysek-Gładysińska, Weronika Grzybek, Wioletta Adamus-Białek, Jacek Bicki, Nina Strzałkowska, Agnieszka Kamińska, Olaf K. Horbańczuk, and Atanas G. Atanasov Fenugreek (Trigonella foenum-graecum L.) Seeds Dietary Supplementation Regulates Liver Antioxidant Defense Systems in Aging Mice. Nutrients. 2020 Sep; 12(9): 2552. DOI: 10.3390/nu12092552; PMID: 32846876
13. Aasim, M.; Baloch, F. S.; Nadeem, M. A.; Bakhsh, A.; Sameeullah, M.; Day, S. Fenugreek (Trigonella Foenum-graecum L.): An Underutilized Edible Plant of Modern World. In Global Perspectives on Underutilized Crops; Ozturk, M., Hakeem, K., Ashraf, M., Ahmad, M., Eds.; Springer: Cham, 2018, 381–408.
14. Wani, S. A.; Kumar, P. Fenugreek: A Review on Its Nutraceutical Properties and Utilization in Various Food Products. J. Saudi Society Agri. Sci. 2018, 17, 97–106.
15. Al-Jasass, F. M.; Al-Jasser, M. S. Chemical Composition and Fatty Acid Content of Some Spices and Herbs under Saudi Arabia Conditions. Sci. World J. 2012, 2012, 1–5.
16. Qamar Abbas Syed et al. Nutritional and therapeutic properties of fenugreek (Trigonella foenum-graecum): a review. International journal of food properties, 2020;23(1):1777-1791.
17. Etsuko Muraki, Yukie Hayashi, Hiroshige Chiba, Nobuyo Tsunoda, and Keizo Kasono Dose-dependent effects, safety and tolerability of fenugreek in diet-induced metabolic disorders in rats. Lipids Health Dis. 2011; 10: 240. DOI: 10.1186/1476-511X-10-240. PMID: 22188728
18. S.M. Kassaee, M.T. Goodarzi,and S.N. Kassaee Ameliorative Effect of Trigonella Foenum Graecum L. on Lipid Profile, Liver Histology and LDL-Receptor Gene Expression in High Cholesterol-Fed Hamsters. Acta Endocrinol (Buchar)., 2021; 17(1): 7–13. DOI: 10.4183/aeb.2021.7; PMID: 34539904.
19. Pintu Miah , Surovi Binte Sharmin Mohona , Md. Mizanur Rahman , Nusrat Subhan , Ferdous Khan , Hemayet Hossain , Shazid Md. Sharker , Md. Ashraful Alam Supplementation of cumin seed powder prevents oxidative stress, hyperlipidemia and non-alcoholic fatty liver in high fat diet fed rats. Biomedicine & Pharmacotherapy. Volume 141, September 2021, 111908.
20. Sami Mnif, Sami Aifa. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem Biodivers, 2015 May;12(5):733-42. DOI: 10.1002/cbdv.201400305.
21. Ali Esmail Al-Snafi. The pharmacological activities of Cuminum cyminum – A review. IOSR Journal Of Pharmacy, 2016;6(6):46-65.
22. Zare R, Heshmati F, Fallahzadeh H and Nadjarzadeh A. Effect of cumin powder on body composition and lipid profile in overweight and obese women. Complement Ther Clin Pract 2014; 20(4): 297-301.
23. I. Bettaieb, S. Bourgou, W.A. Wannes, I. Hamrouni, F. Limam, B. Marzouk. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem., 58 (19) (2010), pp. 10410-10418, DOI:10.1021/jf102248j.
24. I.B. Rebey, S. Kefi, S. Bourgou, I. Ouerghemmi, R. Ksouri, M.S. Tounsi, B. Marzouk. Ripening stage and extraction method effects on physical properties, polyphenol composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Plant Foods Hum. Nutr., 69 (4) (2014), pp. 358-364, DOI: 10.1007/s11130-014-0442-9.
25. Rohit srivastavaSwayam prakash srivastava et al. Anti diabetic and antidyslipedimic activities of Cuminum cyminum L. in validated animal models. Medicinal chemistry research,2016; 20(9).
26. Shamkant B. Badgujar,* Vainav V. Patel, and Atmaram H. Bandivdekar. Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. Biomed Res Int., 2014; 2014: 842674. DOI: 10.1155/2014/842674
27. Koppula S, Kumar H. Foeniculum vulgare Mill (Umbelliferae) attenuates stress and improves memory in wister rats. Tropical Journal of Pharmaceutical Research. 2013;12(4):553–558.
28. Oulmouden F, Saïle R, El Gnaoui N, Benomar H, Lkhider M. Hypolipidemic and anti-atherogenic effect of aqueous extract of fennel (Foeniculum vulgare) extract in an experimental model of atherosclerosis induced by Triton WR-1339. European Journal of Scientific Research. 2011;52(1):91–99.
29. Eman G.E. Helal, Fatma Ahmed Eid, Amira M. Salah EL-Din Ahmed El-Wahsh. Effect of fennel (Foeniculum vulgare) on hyperlipidemic rats.Egyptian Journal of Hospital Medicin, 2011;4(1):212-225. DOI: 10.21608/EJHM.2011.16779.
30. Nayereh Parsaeyan. The Effect of Foeniculum VULgare (Fennel) Extract on Lipid Profile, Lipid Peroxidation and Liver Enzymes of Diabetic Rat. IRANIAN JOURNAL OF DIABETES AND OBESITY, 2016,8; 1,:25-29
31. Gholam Ali Naderi, Mehrdad Roghani , Elham Esmaeil Jamaat , Elham Zahedi, Ashkan Sanaeirad. The effect of Foeniculum vulgare (Fennel) hydroalcoholic extract on serum lipid profiles and liver enzymes in male rats fed a high cholesterol regimen. Journal of Basic and Clinical Pathophysiology, 2019; 7(2):20-27. DOI: 10.22070/jbcp.2019.4214.1112.