Volume : 11, Issue : 02, February – 2024

Title:

TARGETING HEMOSTASIS DYSFUNCTION AND INFLAMMATION IN COVID-19 PATIENTS: POTENTIAL THERAPEUTICS AVENUES THROUGH VIRAL AND HOST MOLECULES

Authors :

Shweta Manoj Dhule, Tappeti Anjali, Thadimela Sai Sathwika, Singam Vinisha

Abstract :

The COVID-19 pandemic has presented magnitude of challenges for global health authorities and researchers alike. The World Health Organization (WHO) is overseeing innumerable clinical studies aimed at determining the potency of existing drug against the virus. Concurrently, scientists worldwide are analysing into the cellular and molecular mechanisms underlying SARS-CoV-2 infection. Studies indicate that assorted factors such as blood haemostasis dysfunction, hypoxia, venous thrombotic and inflammation events play crucial roles in the evolution of COVID-19, from its early stage to several expressions. Understanding how the virus instigates these detrimental cellular and biochemical processes is predominant. This mini review explores budding trends in the pathophysiology of COVID-19 and discusses therapeutic perspectives. Researchers are striving to untwist how SARS-CoV-2 triggers adverse cellular and biochemical reactions in infected individuals, offering hope for the progression of effective treatments.
Key-Words: Hemostasis, COVID-19, SARS-CoV-1, Inflammation, Host Cells, Cytokines

Cite This Article:

Please cite this article in press Shweta Manoj Dhule et al., Targeting Hemostasis Dysfunction And Inflammation In Covid-19 Patients: Potential Therapeutics Avenues Through Viral And Host Molecules , Indo Am. J. P. Sci, 2024; 11 (02).

Number of Downloads : 10

References:

1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.[ http://dx.doi.org/10.1038/s41586-020-2008-3]] [PMID: 32015508]
2. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e [http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
3. Aronson KJ, Ferner RE, DeVito N, Heneghan C. COVID-19 trials registered up to 8 March 2020: An analysis of 382 studies. The Centre for Evidence-Based Medicine 20. [ https://www.cebm.net/COVID-19/registered-trials-and-analysis/]
4. Launch of a European clinical trial against COVID-19 INSERM (PRESS ROOM) 2020 [https://presse.inserm.fr/lancement-dun-essai-clinique-europeen-contre-le-COVID-19/38737/]
5. Who.int. 2021. “Solidarity” clinical trial for COVID-19 treatments. [online] Available at: https://www.who.int/blueprint/priority-diseases/keyaction/Table_of_therapeutics_Appendix_17022020.pdf?ua=1
6. Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc 2020; 95(6):1138-47.[http://dx.doi.org/10.1016/j.mayocp.2020.04.006] [PMID: 32376101]
7. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020; 18(6): 1421-4.[http://dx.doi.org/10.1111/jth.14830] [PMID: 32271988]
8. Zuo T, Zhang F, Lui GCY,et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization [published online ahead of print, 2020 May 20]. Gastroenterology 2020; S0016-5085(20): 34701-6.
9. Gu S, Chen Y, Wu Z,et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis 2020[http://dx.doi.org/10.1093/cid/ciaa709]
10. Chan JF, Yuan S, Kok KH,et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020;395(10223): 514-23.[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID:31986261]
11. Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 2001; 65(1): 131-50.[http://dx.doi.org/10.1128/MMBR.65.1.131-150.2001] [PMID:11238989]
12. Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID:32353251]
13. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: To resolve or not? Am J Pathol 2010; 177(4): 1576-91.[http://dx.doi.org/10.2353/ajpath.2010.100322 [PMID: 20813960]
14. Schwarz KB. Oxidative stress during viral infection: A review. Free Radic Biol Med 1996; 21(5): 641-9. [http://dx.doi.org/10.1016/0891-5849(96)00131-1 ][PMID: 8891667]
15. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A Meta-analysis. JAMA 324(13): 1330-41. [http://dx.doi.org/10.1001/jama.2020.17023]
16. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130(5): 2620-9. [http://dx.doi.org/10.1172/JCI137244 ] [PMID: 32217835]
17. Zhou F, Yu T, Du R,et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62 [http://dx.doi.org/10.1016/j.jcv.2020.104362]
18. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus Infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020;
127: 104362.
[http://dx.doi.org/10.1016/j.jcv.2020.104362] [PMID: 32305883]
19. Yu HH, Qin C, Chen M, Wang W, Tian DS. D-dimer level is Associated with the severity of COVID-19. Thromb Res 2020; 195:219-25.
[http://dx.doi.org/10.1016/j.thromres.2020.07.047] [PMID: 32777639]
20. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 Patients. Ann Hematol 2020; 99(6): 1205-8.
[http://dx.doi.org/10.1007/s00277-020-04019-0] [PMID: 32296910]
21. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a Common risk factor for COVID-19 susceptibility. Physiol Rev 2020;100(3): 1065-75.
[http://dx.doi.org/10.1152/physrev.00013.2020] [PMID: 32216698]
22. Bautista-Vargas M, Bonilla-Abadía F, Cañas CA. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J Thromb Thrombolysis 2020; 50(3): 479-83.
[published online ahead of print, 2020 Jun 9]
[http://dx.doi.org/10.1007/s11239-020-02172-x] [PMID: 32519164]
23. Van der Poll T. Tissue factor as an initiator of coagulation and Inflammation in the lung. Crit Care 2008; 126: S3.
[http://dx.doi.org/10.1186/cc7026]
24. Ferraz CR, Arrahman A, Xie C, et al. Multifunctional toxins in snake Venoms and therapeutic implications: From pain to hemorrhage and Necrosis Frontiers in Ecology and Evolution 2019; 7www.frontIersin.org
25. Ye S, Xia H, Dong C, et al. Identification and characterization of Iflavirus 3C-like protease processing activities. Virology 2012; 428(2):136-45.
[http://dx.doi.org/10.1016/j.virol.2012.04.002] [PMID: 22534091]
26. Chen S, Chen LL, Luo HB, et al. Enzymatic activity characterization Of SARS coronavirus 3C-like protease by fluorescence resonance Energy transfer technique. Acta Pharmacol Sin 2005; 26(1): 99-106.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00010.x] [PMID: 15659121]
27. Xia B, Kang X. Activation and maturation of SARS-CoV main Protease. Protein Cell 2011; 2(4): 282-90.
[http://dx.doi.org/10.1007/s13238-011-1034-1] [PMID: 21533772]
28. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
29. Dahms SO, Arciniega M, Steinmetzer T, Huber R, Then ME. Structure of the unliganded form of the proprotein convertase furin suggests Activation by a substrate-induced mechanism. Proc Natl Acad Sci USA2016; 113(40): 11196- 201.[http://dx.doi.org/10.1073/pnas.1613630113 ] [PMID: 27647913]
30. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains A furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742 [http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
31. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(21): 11727-34.[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
32. Patick AK, Potts KE. Protease inhibitors as antiviral agents. Clin Microbiol Rev 1998; 11(4): 614-27.
[http://dx.doi.org/10.1128/CMR.11.4.614] [PMID: 9767059]
33. Chen YW, Bennu Yiu CP, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: Virtual screening Reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research 2020; 9: 129.
34. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the Development of nucleoside and nucleotide analogues for cancer and Viral diseases. Nat Rev Drug Discover 2013; 12: 447-64. [http://dx.doi.org/10.1038/nrd4010]
35. El-Fakharany EM, Sánchez L, Al-Mehdar HA, Redwan EM. Effectiveness of human, camel, bovine and sheep lactoferrin on the Hepatitis C virus cellular infectivity: Comparison study. Virol J 2013; 10: 199.
[http://dx.doi.org/10.1186/1743-422X-10-199] [PMID: 23782993]
36. Zwirzitz A, Reiter M, Skrabana R, et al. Lactoferrin is a natural Inhibitor of plasminogen activation. J Biol Chem 2018; 293(22): 8600-13. [http://dx.doi.org/10.1074/jbc.RA118.003145] [PMID: 29669808]
37. Hendrixson DR, Qiu J, Shewry SC, et al. Human milk lactoferrin is a Serine protease that cleaves Haemophilus surface proteins at arginine rich sites. Mol Microbiol 2003; 47(3): 607-17. [http://dx.doi.org/10.1046/j.1365-2958.2003.03327.x] [PMID: 12535064]
38. Giansanti F, Panella G, Leboffe L, Antonini G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals (Basel) 2016; 9(4): 61.[http://dx.doi.org/10.3390/ph9040061] [PMID: 27690059]
39. Campione E, Lanna C, Cosio T, et al. Pleiotropic effect of Lactoferrin In the prevention and treatment of COVID-19 infection randomized Clinical trial, in vitro and in silico preliminary evidence https://www.biorxiv.org/content/10.1101/2020.08.11.244996v3
40. Tandon D, Haque MM, Gote M, et al. A prospective randomized, Double-blind, placebo-controlled, dose-response relationship study to Investigate efficacy of fructo-oligosaccharides (FOS) on human gut Microflora. Sci Rep 2019; 9(1): 5473. [http://dx.doi.org/10.1038/s41598-019-41837-3] [PMID: 30940833]
41. Morozov V, Hansman G, Hanisch FG, Schroten H, Kunz C. Human Milk oligosaccharides as promising antivirals. Mol Nutr Food Res 2018; 62(6): e1700679. [http://dx.doi.org/10.1002/mnfr.201700679] [PMID: 29336526]
42. Yang B, Chuang H, Chen RF. Protection from viral infections by human milk oligosaccharides: Direct blockade and indirect modulation of intestinal ecology and immune reactions. Open Glycosci 2012; 5:19-25.[http://dx.doi.org/10.2174/1875398101205010019]
43. Etzold S, Bode L. Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr Opin Virol 2014; 7: 101-7.[http://dx.doi.org/10.1016/j.coviro.2014.06.005] [PMID: 25047751]
44. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 2005; 135(5): 1304-7.[http://dx.doi.org/10.1093/jn/135.5.1304] [PMID: 15867329]
45. Singh R, Mal G, Kumar D, Patil NV, Pathak KML. Camel milk: An important natural adjuvant. Agric Res 2017; 6(4): 327-40.[http://dx.doi.org/10.1007/s40003-017-0284-4]
46. Al haj OA and Al Kanhal HA. Compositional, technological and nutritional aspects of dromedary camel milk. Int Dairy J 2010; 20:811e-21.
47. Abrhaley A, Leta S. Medicinal value of camel milk and meat. J Appl Anim Res 2018; 46: 552-8.[ http://dx.doi.org/10.1080/09712119.2017.1357562]
48. El-Fakharany EM, El-Baky NA, Linjawi MH, et al. Influence of camel milk on the hepatitis C virus burden of infected patients. Exp Ther Med 2017; 13(4): 1313-20. [http://dx.doi.org/10.3892/etm.2017.4159] [PMID: 28413471]
49. el Agamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R.Antibacterial and antiviral activity of camel milk protective proteins. J Dairy Res 1992; 59(2): 169-75. [http://dx.doi.org/10.1017/S0022029900030417] [PMID: 1319434]
50. Giansanti F, Panella G, Leboffe L, Antonini G. Lactoferrin from milk:Nutraceutical and pharmacological properties. Pharmaceuticals (Basel)2016; 9(4): E61. [http://dx.doi.org/10.3390/ph9040061] [PMID: 27690059]
51. 55. Ramani S, Stewart CJ, Laucirica DR, et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018; 9(1): 5010. [http://dx.doi.org/10.1038/s41467-018-07476-4] [PMID: 30479342]
52. Weichert S, Koromyslova A, Singh BK, et al. Structural basis for norovirus inhibition by human milk oligosaccharides. J Virol 2016; 90(9): 4843-8. [http://dx.doi.org/10.1128/JVI.03223-15] [PMID: 26889023]
53. Errasfa M. Milk oligosaccharides and lectins as candidates for clinical trials against COVID-19. Curr Nutr Food Sci 2020; 16: 1. [http://dx.doi.org/10.2174/1573401316999200819125355]
54. Carter A. Mitchell, Koreen Ramessar, and Barry R. O’Keefe. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142: 37-54. [http://dx.doi.org/10.1016/j.antiviral.2017.03.007]
55. Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87. [http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
56. Kumaki Y, Wandersee MK, Smith AJ, et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res 2011; 90(1): 22-32. [http://dx.doi.org/10.1016/j.antiviral.2011.02.003] [PMID: 21338626]
57. Liu YM, Shahed-Al-Mahmud M, Chen X, et al. A carbohydratebinding protein from the edible lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Rep 2020; 32(6): 108016. [http://dx.doi.org/10.1016/j.celrep.2020.108016] [PMID: 32755598]
58. Gordts SC, Renders M, Férir G, et al. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015; 70(6): 1674-85. [http://dx.doi.org/10.1093/jac/dkv034] [PMID: 25700718]
59. van der Meer FJ, de Haan CA, Schuurman NM, et al. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res 2007; 76(1): 21-9. [http://dx.doi.org/10.1016/j.antiviral.2007.04.003] [PMID: 17560666]
60. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res 2015; 95-96: 138-58. [http://dx.doi.org/10.1016/j.phrs.2015.03.011] [PMID: 25829334]
61. Goyal SN, Prajapati CP, Gore PR, et al. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front Pharmacol 2017; 8: 656[http://dx.doi.org/10.3389/fphar.2017.00656] [PMID: 28983249]
62. Ahmad A, Rehman MU, Ahmad P, Alkharfy KM. COVID-19 and thymoquinone: Connecting the dots. Phytother Res 2020; 34(11): 2786-9. [http://dx.doi.org/10.1002/ptr.6793] [PMID: 32588453]
63. Mohammadabadi MR, Mozafari MR. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J Drug Deliv Sci Technol 2018; 47: 445-53[http://dx.doi.org/10.1016/j.jddst.2018.08.019]
64. Mohammadabadi MR, Mozafari MR. Development of nanoliposomeencapsulated thymoquinone:Evaluation of loading efficiency and particle characterization. J Biopharm 2019; 11: 39-46.
65. Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med 2003; 24(1-3): 3-9[http://dx.doi.org/10.1016/S0098-2997(02)00087-0] [PMID: 12537985]
66. Tang CF, Ding H, Jiao RQ, Wu XX, Kong LD. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol 2020; 886: 173546. [http://dx.doi.org/10.1016/j.ejphar.2020.173546] [PMID: 32931782]
67. Wallace TC. Combating COVID-19 and building immune resilience: A potential role for magnesium nutrition? J Am Coll Nutr 2020; 39(8): 685-93. [http://dx.doi.org/10.1080/07315724.2020.1785971] [PMID: 32649272]
68. Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: Is there a role for magnesium? Hypotheses and perspectives. Magnes Res 2020; 33(2): 21-7. [http://dx.doi.org/10.1684/mrh.2020.0465] [PMID: 32554340]
69. Tobaiqy M, Qashqary M, Al-Dahery S, et al. Therapeutic management of patients with COVID-19: A systematic review. Infect Preventi in Pract 2020; 2(3): 100061. [http://dx.doi.org/10.1016/j.infpip.2020.100061]
70. Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/ hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res 2020; 158: 104904[http://dx.doi.org/10.1016/j.phrs.2020.104904] [PMID: 32430286]
71. Foscolou A, Critselis E, Panagiotakos D. Olive oil consumption and human health: A narrative review. Maturitas 2018; 118: 60-6[http://dx.doi.org/10.1016/j.maturitas.2018.10.013] [PMID: 30415757]
72. Essouiri J, Abourazzak FE, Lazrak F, et al. Efficacy of argane oil on metabolic syndrome in a moroccan knee osteoarthritis population. Curr Rheumatol Rev 2018; 14(1): 84-8. [http://dx.doi.org/10.2174/1573397112666161205103009] [PMID: 27917705]
73. Eljaoudi R, Elkabbaj D, Bahadi A, Ibrahimi A, Benyahia M, Errasfa M. Consumption of argan oil improves antioxidant and lipid status in hemodialysis patients. Phytother Res 2015; 29(10): 1595-9. [http://dx.doi.org/10.1002/ptr.5405] [PMID: 26101142]