Volume : 11, Issue : 01, January – 2024

Title:

A REVIEW ARTICLE ON RECENT CHANGES IN FLUOROQUINOLONES

Authors :

E. Honey*, T. Shiva Sai

Abstract :

Quinolones are potent antimicrobial agents with a basic chemical structure of bicyclic ring. Fluorine atom at position C-6 and various substituents on basic quinolone structure, namely norfloxacin, ciprofloxacin, levofloxacin and other agents and target molecules of quinolones and fluoroquinolones are bacterial gyrase and topoisomerase IV enzymes. Fluoroquinolones introduced in clinical trials namely avarofloxacin, delafloxacin, Finafloxacin, zabofloxacin and nonfluorinated nemonoxacin.
Fluoroquinolones endure of the most important kind of antibacterial agents and the emergence of more virulent and resistant strains of bacteria by development of mutated DNA, binding proteins, efflux pump mechanism. The new generations of fluoroquinolones with a spectrum activity includes Gram +Ve Gram -Ve and atypical bacteria. Many fluoroquinolones have other biological effects such as anti-HIV, anti-fungal, anti-plasmodic and anti-tumor activity.
Keywords: Chemical structure, Clinical trials, Pharmacokinetics, Quinolones, Safety, Tolerability, Toxicity

Cite This Article:

Please cite this article in press E.Honey et al., A Review Article On Recent Changes In Fluoroquinolones., Indo Am. J. P. Sci, 2024; 11 (01).

Number of Downloads : 10

References:

[1] F. E. G. M. B. J. B. R. Lesher GY, “1,8-Naphthyridine derivatives: a new class of chemotherapeutic agents,” J Med Pharm Chem, p. 5:1063–8, 1962.
[2] M. J. E. V. T. P. Bambeke VF, “Quinolones in 2005: an update,” Clin Microbiol Infect, p.11:256–80, 2005.
[3] B. VF, “Renaissance of antibiotics against difficult infections:focus on oritavancin and new ketolides and quinolones,” Ann Med, p. 46:512–29, 2014.
[4] R. V. V. K. A. T. S. S. K. J. M. J. A. A. Madaan, Pharm, pp. 348,837, 2015.
[5] M. P. W. A. S. Wagman, “Quinolone Antibacterial Agents,Comprehensive Medicinal Chemistry II, 2nd edn,” (Eds: J. B. Taylor, D. J.Triggle), Elsevier, Amesterdam, pp. 567-596, 2007.
[6] A. I. S. M. S. S. T. I. H. Koga, J. Med. Chem, pp. 23,1358, 1980.
[7] S. Z. Z. X. Z.-S. L. M.-L. L. L.-S. F. E. Y.-Q. Hu, J.Med.Chem, pp. 141,335, 2017.
[8] A. J. S. J. R. P. M. S. Y. P. C. Sharma, J Enzyme Inhib. Med.Chem, pp. 25,577, 2010.
[9] S.-E. P. G. E.-D. A. A. A.-R. M. A. S. Y. M. Abdel-Aziz, J.Med.Chem, pp. 69,427, 2013.
[10] R. J. P. K. S. G. B. L. S. B. N. R. J. V. N. S. B. V. B. R. K. Shandil, “Antimicrob,” Agents Chemother, pp. 51,576, 2007.
[11] A. L. M. R. D. G. L. D. T. Gumbo, Antimicrob. Agents Chemother, pp. 49,3178, 2005.
[12] A. A. M. Daneshtalab, J.Pharm. Pharm.Sci, pp. 15,52, 2011.
[13] S. L. C. B. H. L. P. G. J. Li, J.Mol.Graph.Model, pp. 44,266, 2013.
[14] V. L. L. I. I. T. A. I. B. R. M. Pudlo, “Bioorg,” Med.Chem, pp. 22,2496, 2014.
[15] T. P. Bambeke VF, “Safety profile of the respiratory fluoroquinolone moxifloxacin: comparison with other fluoroquinolones and other antibacterial classes,” Drug Saf, p. 32:359–78, 2009.
[16] A. G. F. A. F. A. Sousa J, “Third and fourth generation fluoroquinolone antibacterials: a systemic review of safety and toxicity profiles,” Curr Drug Saf, p. 9:89–105, 2014.
[17] B. G. P. M. R. J. Wright DH, “Application of fluoroquinolone pharmacodynamics,” J Antimicrob Chemother, p. 46:669–83, 2000.
[18] C. P. G. M. M. M. W. P. G. T. L. A. J. Davenport JM, “Summary of pharmacokinetics and tissue distribution of a broad-spectrum fluoroquinolone,” JNJ-Q2. Clin Pharmacol Drug Dev,
p. 1:121– 30, 2012.
[19] B. M. H. J. H. A. L. D. M. M. H. S. Lawrence L, “In: Pharmacokinetics (PK) and safety of single doses of delafloxacin administered intravenously in healthy human subjects,” Proceedings of the 51st interscience conference of antimicrobial agents and chemotherapy,Chicago,USA,September, p. 17–20, 2011.
[20] A. A. V. A. H. H. S. W. S. M.-L. L. P. R. L. H. Patel H, “Human pharmacokinetics and safety profile of finafloxacin a new fluoroquinolone antibiotic in healthy volunteers,” Antimicrob Agents Chemother, p. 55:4386–93, 2011.
[21] K. S. S. K. L. C. L. K. Y. K. C. J. Han HK, “Comparison of pharmacokinetics between new quinolone antibiotics: the zabofloxacin hydrochloride capsule and the zabofloxacin aspartate tablet.,” Curr Med Res Opin, p. 29:1349–55, 2013.
[22] N. R. Cozzarelli, Science, pp. 207,953, 1980.
[23] F. Z. R. J. N. J. D. Walters, Antimicrob. Agents Chemother, pp. 43,2710, 1999.
[24] F. Schmitz, J. Antimicrob. Chemother, pp. 41,481, 1998.J. S. I. M. A. Gutierrez, Antibiotics, pp. 7,32, 2018.S. Scroggs, C. Andrade, R. Chinnasamy, S. Azar, E. Schirtzinger, E. Garcia, J. Arterburn, K. Hanley and S. Rossi, “Old Drugs with New Tricks: Efficacy of Fluoroquinolones to Suppress Replication of Flaviviruses,” Viruses, pp. 12,1022, 2020.
[25] S. Scroggs, J. Gass, R. Chinnasamy, S. Widen, S. Azar, S. Rossi, J. Arterburn, N. Vasilakis and K. Hanley, “Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness,” Virology, 552, 94–106, 2021.
[26] Y.-P. Xu, Y. Qiu, B. Zhang, G. Chen, Q. Chen, M. Wang, F. Mo, J. Xu, J. Wu, R.-R. Zhang and e. al, “Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids,” Cell Res, pp. 29, 265–273, 2019.
[29] I. Khan, S. Siddiqui, S. Rehmani, S. Kazmi and S. Ali, “Fluoroquinolones inhibit HCV by targeting its helicase,” Antivir. Ther, pp. 17,467, 2012.
[30] M. Yamaya, H. Nishimura, Y. Hatachi, H. Yasuda, X. Deng, T. Sasaki, K. Mizuta, H. Kubo and R.Nagatomi, “Levofloxacin Inhibits Rhinovirus Infection in Primary Cultures of Human Tracheal Epithelial Cells,” Antimicrob. Agents Chemother, pp. 56, 4052–4061., 2012.
[31] F. Touret, M. Gilles, K. Barral, A. Nougairède, J. van Helden, E. Decroly, X. de Lamballerie and B.Coutard, “In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication,” Sci.Rep, pp. 10, 1–8, 2020.
[32] D. Kumar, V. Chandel, S. Raj and B. Rathi, “In silico identification of potent FDA approved drugs against Coronavirus COVID-19 main protease: A drug repurposing approach,” Chem. Biol. Lett., p. 166–175, 2020.
[33] K. Marciniec, A. Beberok, P. P˛ecak, S. Boryczka and D. Wrze´sniok, “Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: Preliminary in silico analysis.,” Pharmacol. Rep, pp. 1-9, 2020.
[34] I. Karampela and M. Dalamaga, “Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19?,” Arch.Med.Res, pp. 57, 741–742, 2020.
[35] J. Desmyter, J. Melnick and W. Rawls, “Defectiveness of Interferon Production and of Rubella Virus Interference in a Line of African Green Monkey Kidney Cells (Vero),” J. Virol, pp. 2, 955–961, 1968.
[36] J. Emeny and M. Morgan, “Regulation of the Interferon System: Evidence that Vero Cells have a Genetic Defect in Interferon Production,” J. Gen. Virol, pp. 43, 247–252, 1979.
[37] I. T. S. Y. M. Y. O. G. F. M. Nozaki-Renard J, “Fluoroquinolones Protect the Human Lymphocyte CEM Cell Line from HIV-1-Mediated Cytotoxicity,” Cell Struct Funct, p. 15(5):295–9, 1990.
[38] K. K. H. K. U. J. M. G. Kojima H, “Use of fluoroquinolones in patients with chronic hepatitis C virus- induced liver failure,” Antimicrob Agents Chemother, p. 46(10):3280–2, 2002,Oct.
[39] Y. M. N. C. Ikeda S, “Antiviral activity and inhibition of topoisomerase by ofloxacin, a new quinolone derivative,” Antivir Res, pp. 8(3):103-13, 1987.
[40] O. M. M. M. K. Y. I. T. T. e. a. Baba M, “Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives,” Antimicrob Agents and Chemotherapy, pp. 41(6):1250-5, 1997.
[41] F. F. S. M. M. C. L. A. F. Mottola C, “In vitro antiviral activity of fluoroquinolones against African swine fever virus,” Vet Microbiol, pp. 165(1-2):86-94, 2013.
[42] L. R. B. E. G. T. R. Sharma BN, “Fluoroquinolones inhibit human polyomavirus BK (BKV) replication in primary human kidney cells,” Antiviral Res, pp. 92(1):115-23, 2011.
[43] T. S. T. M. S. M. Takada A, “Effects of ofloxacin for type C hepatitis,” Int Hepatol Commun, pp.1(5):272-7, 1993.
[44] N. H. H. Y. Y. H. D. X. T. e. a. Yamaya M, “Levofloxacin inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells,” Antimicrob Agents and Chemotherapy, pp. 56(8):4052-61, 2012.
[45] Z. J. W. P. M. J. H. R. Anand K, “Coronavirus Main Proteinase (3CL<sup>pro</sup>) Structure: Basis for Design of Anti-SARS Drugs,” Science, p. 300(5626):1763, 2003.
[46] B. A. P. P. B. S. W. D. Marciniec K, “Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: preliminary in silico analysis,” Pharmacol Rep, pp. 72(6):1553-61, 2020 Dec.
[47] Y. M. N. C. Ikeda S, ” Antiviral activity and inhibition of topoisomerase by ofloxacin, a new quinolone derivative,” Antivir Res, pp. 8(3):103-13, 1987.
[48] D. A, “Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action?,” Eur J Clin Microbiol Infect Dis, pp. 34(4):661-8, 2015.
[49] C. A. D. J. Ali SH, ” Inhibition of Simian virus 40 large T antigen helicase activity by fluoroquinolones,” Antivir Ther, p. 12(1):1, 2007.
[50] S. S. R. S. K. S. A. S. Khan IA, “Fluoroquinolones inhibit HCV by targeting its helicase,” Antivir Ther,p. 17(3):467, 2012.
[51] A. E. T. F. Z. A. B. A. R. D. e. a. Umbro I, “Possible antiviral effect of ciprofloxacin treatment on polyomavirus BK replication and analysis of non-coding control region sequences,” Virol J, p. 10(1):274, 2013.
[52] N. J. C. Wang, Rev. Mol. Cell Biol, pp. 3, 430, 2003.
[53] D. C. Hooper, Emerg. Infect. Dis, pp. 7, 337, 2001.
[54] A. M. B. C. F. M. R. M. S. A. G. Y. P. a. M. C. M. Nagarajan, J. Med. Chem, pp. 47, 5651, 2004.
[55] A. S. a. A. F. S. Emami, IJPR, pp. 3, 123, 2005.
[56] G. J. F. B. C. B. L. V. D. E. G. a. W. A. J. A. Spicer, Anticancer Drug Des, pp. 14, 37, 1999.
[57] M. L. G. K. S. D. P. Y. N. A. G. P. a. A. W. H. Hentze, Hepatology, pp. 39, 1311, 2004.
[58] N. R. S. B. a. O. L. N. Lebedeva, IUBMB Life, pp. 60,130, 2008.
[59] G. W. N. D. X. W. T. C. S. X. a. W. H. G. Hu, Acta Pharm. Sin B, pp. 2, 312, 2012.
[60] A. S. a. A. F. S. Emami, IJPR, pp. 3,123, 2005.
[61] R. H. S. T. J. A. D. B. a. J. P. D. Chu, Drugs Exp Clin Res, pp. 20,177, 1994.
[62] G. S. B. a. M. R. Hale, Curr. Med. Chem, pp. 23, 520, 2016.
[63] S. W. M.-H. W. M.-L. L. G.-M. X. X.-J. L. Y. C. a. H.-W. H. X.-D. Jia, Chin Chem Lett, pp. 28,235, 2017.
[64] J. A. F. M. P. a. S. A. S. G. C. Jamieson, J. Drug, pp. 76,1245, 2016.
[65] N. G. M. N. R. J. A. B. J. O. a. T. D. T. Kloskowski, Acta Pol Pharm, pp. 68, 859, 2011.
[66] M. O. M. G. H. G. E. H. a. D. S. C. Herold, Br. J. Cancer, pp. 86, 443, 2002.
[67] D. D. N. S. a. E. R. E. Somekh, JPET, pp. 248,415, 1989.
[68] M. L. E. G. E. L. R. W. L. a. L. E. D. T. Miclau, J. Orthop.Res, pp. 16, 509, 1998.
[69] A. S. a. A. F. S. Emami, Mini Rev Med Chem, pp. 6,375, 2006.
[70] Champoux, “J.J. DNA Topoisomerases: Structure, Function and Mechanism,” Annu. Rev. Biochem,pp. 70, 369-413, 2001.
[71] Wang, “J.C. Cellular Roles of DNA Topoisomerases: A Molecular Perspective,” Nat. Rev. Mol. Cell Biol, pp. 3,430-440, 2002.
[72] M. Abdel-Aziz, S.-E. Park, G.-D. Abuo-Rahma, M. Sayed and Y. Kwon, “Novel N-4-Piperazinyl- Ciprofloxacin-Chalcone Hybrids: Synthesis, Physicochemical Properties, Anticancer and Topoisomerase I and II Inhibitory Activity,” Eur. J. Med. Chem, pp. 69, 427-438, 2013.
[73] M. Nagarajan, A. Morrell, B. Fort, M. Meckley, S. Antony, G. Kohlhagen, Y. Pommier and M. Cushman, “Synthesis and Anticancer Activity of Simplified Indenoisoquinoline on the Aromatic Rings,” J. Med. Chem, pp. 47, 5651-5661, 2004.
[74] D. O. N. Burden, “Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme.,” Biochim Biophys Acta, pp. 1400 (1-3), 139-54, 1998.
[75] S. Emami, A. Shafiee and A. Foroumadi, “Quinolones: Recent Structural and Clinical Developments,” Iran. J. Pharm. Res, pp. 0, 123-136., 2010.
[76] J. Spicer, G. Finlay, B. Baguley, L. Velea, D. Graves and W. Denny, “5,7-Disubstituted Analogues of the Mixed Topoisomerase I/II Poison N-[2-(Dimethylamino)Ethyl]Acridine-4-Carboxamide (DACA):DNA Binding and Patterns of Cytotoxicity,” Anticancer.Drug Des, pp. 14, 37-45, 1999.
[77] H. Hentze, M. Latta, G. Künstle, S. Dhakshinamoorthy, P. Ng, A. Porter and A. Wendel, “Topoisomerase Inhibitor Camptothecin Sensitizes Mouse Hepatocytes in Vitro and in Vivo to TNF-Mediated Apoptosis,” Hepatol. Baltim. Md, pp. 39, 1311-1320, 2004.