Volume : 11, Issue : 01, January – 2024

Title:

THERAPEUTIC POTENTIAL OF NANOPARTICLES CONJUGATED WITH DRUG IN RELIEVING COLON RELATED DISORDERS

Authors :

Sneha Rajendra Korde*, Dr. Pankaj M. Pimpalshende, Dr. Satish B. Kosalge

Abstract :

Globally, the prevalence of illnesses associated to the colon is increasing, with notable regional and national differences in disease patterns and levels. Drug administration can occur in the colon both locally and systemically. Topical therapy of inflammatory bowel disease is made possible by local delivery. On the other hand, if the medications are able to target the colon directly, the systemic adverse effects can be minimized and the treatment become more successful. Among the many benefits of nanoparticles is their larger volume/surface ratio, which increases the drug’s contact area at the same dose and improves delivery efficiency. This may lessen the toxicity and adverse effects of drugs. Additionally, nanoparticles’ easily modifiable surface enables the creation of sustained release mechanisms. By utilizing the physicochemical alterations that many colonic disorders cause, such as an increase in the infiltration of immune cells that are amenable to targeting in the colon, new developments have improved colon targeting nanosystems. This page provides an overview of diseases connected to the colon, colon-specific drug delivery strategies, an overview of nanoparticles, and a list of previously developed nanoparticulate drug delivery methods for the treatment of colon problems. Keywords: Colon, nanoparticles, formulation, characterization, nanotechnology

Cite This Article:

Please cite this article in press Sneha Rajendra Korde et al., Therapeutic Potential Of Nanoparticles Conjugated With Drug In Relieving Colon Related Disorders, Indo Am. J. P. Sci, 2024; 11 (01).

Number of Downloads : 10

References:

1. Parul B. Patel, Avinash S. Dhake. Multiparticulate approach: an emerging trend in colon specific drug delivery for Chronotherapy. Journal of Applied Pharmaceutical Science 01 (05); 2011: 59-63.
2. Sreelatha D and Brahma CK.A Review on primary and novel approaches of colon targeted drug delivery system. Journal of Global Trends in Pharmaceutical Sciences.2012;4(3):1174-1183.
3. Sonasaniya B, Patel MR and Patel KR.A Review on colon targeted drug delivery system. International Journal of Universal Pharmacy and Bio Sciences.2013;2(1):20-34.
4. Gupta VK. A review article on colonic targeted drug delivery system. The pharma innovation. 2012 Sep 1;1(7).
5. Singh BN.Modified-release solid formulations for colonic delivery.Recent patents on drug delivery & formulation.2007 Feb 1;1(1):53-63.
6. Chourasia M.K.; Jain S.K.Pharmaceutical approaches to colon targeted drug delivery systems. J.Pharm Sci. 2003; 6 (1) : 33-66
7. Threveen C, Vinay V., Krishna V.A. Colon specific drug delivery systems: a review on primary and novel approaches, IJPSRR, 2011, article-031
8. KaranjitKaur, KwonhoKim;Studies of chitosan/organic acid/Eudragit® RS/RL-coated system for colonic delivery International Journal of Pharmaceutics 2009, 366, 140–148.
9. Philip AK., Dubey RK., PathakK.Optimizing delivery of flurbiprofen to the colon using a targeted prodrugapproach.J Pham Pharmacol 2008; 60: 607-613.
10. Kulkarni, S.K. Pharmacology of gastro-intestinal tract (GIT).In S. K. Kulkarni (Ed.) Book of Experimental Pharmacology. New Delhi: Vallabh Prakashan.1999; 148- 150.
11. McLeod AD., Friend DR., Thoma NT. Glucocorticoid-dextran conjugates as potential prodrugs for colon specific deliveryhydrolysis in rat gastrointestinal tract contents. J Pham Sci 1994; 83(9): 1284-1288.
12. RatnaV,Prabhakaran L and PuroshottamM.An Overview-Colon targeted drug delivery system.International Journal of Pharmaceutical and Research.2010; 8(2).
13. Aarti P. Nikam, Mukesh. P. Ratnaparkhiand, Shilpa P. Chaudhari. Nanoparticles – An overview. Int. J. Res. Dev. Pharm. L. Sci. 2014, 3(5), 1121-1127.
14. KonwarRanjit, Ahmed Abdul Baquee. Nanoparticles: An overview of preparation, characterization and application.International research journal of pharmacy, 2013, 4(4), 47-54.
15. Langer R. Biomaterials in drug delivery and tissue engineering; one labortory’sexperience.Acc ChemRes.2000;33:94-101.
16. Bhadia D, Bhadra S, Jain P and Jain NK.Pegnology; a review of PEGylated systems; Pharmazin. 2002;57:5- 20.
17. A.KrishnaSailaja, P. Amarehwarar, P.Chakravarty .Different techniques used for the preparation of nanoparticles using natural polymers and their application. International Journal of Pharmacy and Pharmaceutical Science, vol:3(2), 2011, page no:45- 40.
18. Li YP, Pei YY, Zhou ZH, Zhang XY, GuZH and Ding J. Nanoparticles as tumornecrosis factor-[alpha] carriers. J control release. 2001;71:287-296.
19. Nishikanth C Shinde, Nisha J keskar, Prashant D Argade. Journal of nanobiotechnology 16:17, 2018, page no 1-33.
20. ManikandanMahalingam, Kannan Krishnamurthy, selection of suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach, vol5(1), 2015, page no:57-67.
21. Couvreur P, Barratt G, Fattal E, Legrand P, Vanthier C. Nanocapsule technology; a review. Crit Res Ther drug carrier syst. 2002;19:99-134.
22. Champeau Rachel. Assessing safety health risks of nanomaterials. 2006;15:2005.
23. Delvecchio Rick. Berkeley considering need for nano safety.articles.sfgate.com;2006.
24. Susan D Souza, A review of in vitro drug release test methods for nano-sized dosage forms, Journal of Advances in Pharmaceutics, 2014, page no: 1-12
25. Xi-Feng Zhang, Zhi-Guo Liu, Wei Shen, and SangiliyandiGurunathan.Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International journal of molecular science, 2016; 17(9): 1534.
26. Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 2008; 4: 149-158.
27. Ali Aghebati-Maleki ,SanamDolati , MajidAhmadiet. al., Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol, 2020; 235(3): 1962-1972.
28. Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis & Rheumatology, 2007; 56(2): 544-554.
29. Minho Kim, Jung-Hoon Lee, Jwa-Min Nam.PlasmonicPhotothermal Nanoparticles for Biomedical Applications. Adv Sci., 2019; 6(17): 1-23.
30. Ibrahim khan, Khalid saeed, IdressKhan.Nanoparticles properties, applications and toxicities, Arabian journal of chemistry, 12, 2019, page no:909- 927.
31. Bhattacharya S, Page A, Shinde P. Development and Evaluation of Potato Starch and Chitosan Modified Capecitabine Nanoparticles for Enhanced Colon Cancer Treatment: A Comprehensive Study on PhysicalProperties, In vitro Efficacy, and In vivo Targeting. January 11th, 2024
32. Manhas P, Cokca C, Sharma R, Peneva K, Wangoo N, Sharma D, Sharma RK. Chitosan functionalized doxorubicin loaded poly (methacrylamide) based copolymeric nanoparticles for enhanced cellular internalization and in vitro anticancer evaluation.International Journal of Biological Macromolecules. 2024 Jan 8:129242.
33. Jafari AM, Morsali A, Bozorgmehr MR, Beyramabadi SA, Mohseni S. Modeling and characterization of lenalidomide-loaded tripolyphosphate-crosslinked chitosan nanoparticles for anticancer drug delivery.International Journal of Biological Macromolecules. 2024 Jan 12:129360.
34. Rajput H, Nangare S, Khan Z, Patil A, Bari S, Patil P. Design of lactoferrin functionalized carboxymethyl dextran coated egg albumin nanoconjugate for targeted delivery of capsaicin: Spectroscopic and cytotoxicity studies.International Journal of Biological Macromolecules. 2024 Jan 1;256:128392.
35. Moez NM, Hosseini SM, Kalhori F, Shokoohizadeh L, Arabestani MR. Co-delivery of streptomycin and hydroxychloroquine by labeled solid lipid nanoparticles to treat brucellosis: an animal study. Scientific Reports.2023 Aug 28;13(1):14012. NM, Hosseini SM, Kalhori F, Shokoohizadeh L, Arabestani MR. Co-delivery of streptomycin and hydroxychloroquine by labeled solid lipid nanoparticles to treat brucellosis: an animal study.Scientific Reports. 2023 Aug 28;13(1):14012.
36. Dastneshan A, Rahiminezhad S, Mezajin MN, Jevinani HN, Akbarzadeh I, Abdihaji M, Qahremani R, Jahanbakhshi M, Lalami ZA, Heydari H, Noorbazargan H. Cefazolin encapsulated UiO-66-NH2 nanoparticles enhance the antibacterial activity and biofilm inhibition against drug-resistant S. aureus: in vitro and in vivo studies.Chemical Engineering Journal. 2023 Jan 1;455:140544.
37. Alishiri M, Gonbadi M, Narimani M, Abdollahi SA, Shahsavaripour N. Optimization of process parameters for trimethoprim and sulfamethoxazole removal by magnetite-chitosan nanoparticles using Box–Behnkendesign.Scientific Reports. 2023 Sep 2;13(1):14489.
38. Radu ER, Pandele AM, Tuncel C, Miculescu F, VoicuSI. Preparation and Characterization of Chitosan/LDH Composite Membranes for Drug Delivery Application.Membranes. 2023 Feb 1;13(2):179.
39. ZaidAlkilani A, Musleh B, Hamed R, Swellmeen L, Basheer HA. Preparation and characterization of patch loaded with clarithromycin nanovesicles for transdermal drug delivery.Journal of Functional Biomaterials. 2023 Jan 19;14(2):57.
40. Xiong M, Li Y, He H, Hao S, Fang P, Xu M, Chen Y, Chen Y, Yu S, Hu H. Cyclosporine A-loaded colon-targeted oral nanomicelles self-assembly by galactosylatedcarboxymethyl chitosan for efficient ulcerative colitis therapy. European Journal of Pharmaceutics and Biopharmaceutics. 2023 Jun 17.
41. Fayed B, Jagal J, Cagliani R, Kedia RA, Elsherbeny A, Bayraktutan H, Khoder G, Haider M. Co-administration of amoxicillin-loaded chitosan nanoparticles and inulin: A novel strategy for mitigating antibiotic resistance and preserving microbiota balance in Helicobacter pylori treatment. International Journal of Biological Macromolecules. 2023 Dec 31;253:126706
42. Alshaman R, Alattar A, El-Sayed RM, Gardouh AR, Elshaer RE, Elkazaz AY, Eladl MA, El-Sherbiny M, Farag NE, Hamdan AM, Zaitone SA. Formulation and characterization of doxycycline-loaded polymeric nanoparticles for testing antitumor/antiangiogenic action in experimental colon cancer in mice. Nanomaterials. 2022 Mar 3;12(5):857.
43. Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: Formulation and characterization. Applied Biochemistry and Biotechnology. 2022 Aug;194(8):3733-48
44. Zhou K, Yan Y, Chen D, Huang L, Li C, Meng K, Wang S, Algharib SA, Yuan Z, Xie S. Solid lipid nanoparticles for duodenum targeted oral delivery of tilmicosin. Pharmaceutics. 2020 Aug 4;12(8):731.
45. Madkhali OA, Sivagurunathan Moni S, Sultan MH, Bukhary HA, Ghazwani M, Alhakamy NA, Meraya AM, Alshahrani S, Alqahtani SS, Bakkari MA, Alam MI. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent. Scientific Reports. 2021 May 10;11(1):9914
46. Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, Khan S, El-Enshasy HA, Haque S. Preparation and evaluation of the ZnO NP–ampicillin/sulbactamnanoantibiotic: Optimization of formulation variables using RSM coupled GA method and antibacterial activities. Biomolecules. 2019 Nov 21;9(12):764
47. Sheaikh SS, Harkal SK, Gaikwad RP, Gawali RW, Deshmukh DP. Formulation and Evaluation of Polymeric Nanoparticles of Rifampicin for Anti-Tubercular Therapy. International Journal of Healthcare and Medical Sciences. 2018;4(6):117-22.
48. Pignatello R, Leonardi A, Fuochi V, PetronioPetronio G, Greco AS, Furneri PM. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials. 2018 May 6;8(5):304.
49. MalekiDizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artificial cells, nanomedicine, and biotechnology. 2017 Apr 3;45(3):535-43.
50. Ibrahim HM, El-Bisi MK, Taha GM, El-Alfy EA. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. Journal of Applied Pharmaceutical Science. 2015 Oct 28;5(10):085-90.
51. Asadi A. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment. Applied Nanoscience. 2014 Apr;4:455-60.
52. Saha P, Goyal AK, Rath G. Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Tropical Journal of Pharmaceutical Research. 2010;9(5).
53. Safari F, Mirzaeei S, Mohammadi G. Development of Chitosan–Tripolyphosphate Nanoparticles as Glycopeptide Antibiotic Reservoirs and Ex Vivo Evaluation for Their Potential to Enhance the Corneal Permeation in Ocular Drug Delivery. Pharmaceutical Sciences. 2021 Oct 23; 28(3):449-58.