Volume : 11, Issue : 01, January – 2024

Title:

A REVIEW ON GOLD NANOPARTICLES IN NOVEL DRUG DELIVERY SYSTEMS

Authors :

Dr.B.V.Ramana*,P.Shahanaz

Abstract :

Nanoparticles(NPs) are solid,spherical particles of size 100nm,prepared from polymers(natural or synthetic).Hydrophobic and hydrophoilic drugs,vaccines and macromolecules can be delivered by using NPs,which may also allow controlled drug delivery or a targeted administration to a specific cell or organ.
Nanotechnology is an emerging scientific discipline with numerous applications in the field of biomedicine and manufacturing new materials.Plenty and pretty applications of nanoparticles have gained utmost priority now-a-days due to their versatile flexibility in wide range of applications.Some nanoparticles also show bactericidal effects and hence a high surface to volme ratio.
Due to their unique properties, small size and high area to volume ratio ,gold nanoparticles.Show special advantages in this field among nanoparticles ,biosynthesized gold NPs remarkable applications in different and chemicals sensors ,heavy metals ion detection,electrical coatings.During the last two decades ,NPs have been extensively investigated and developed in imaging applications due to the superior narrow range of emission,photo stability,broad excitation wavelength,quantum dots have attracted the attention from scientists and engineers interested in drug targeting,biomarkers and sensors.
Keywords: Gold nanoparticles, Nanotechnology, drug delivery, biomedical applications.

Cite This Article:

Please cite this article in press B.V.Ramana et al., A Review On Gold Nanoparticles In Novel Drug Delivery Systems , Indo Am. J. P. Sci, 2024; 11 (01).

Number of Downloads : 10

References:

1. Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis ofnanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263:3. doi:10.1088/1757-899X/263/3/032019
2. Cai W, Gao T, Hao Hong JS. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32. doi:10.2147/NSA.S3788
3. Mokhatab S, Fresky MA, Islam MR. Applications of nanotechnology in oil and gas E&P. J Pet Technol. 2006;58(04):48–51. doi:10.2118/ 0406-0048-jpt Mu L, Sprando RL. Application of nanotechnology in cosmetics. Pharm Res. 2010;27(8):1746– doi:10.1007/s11095-010-0139-1
4. Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52. doi:10.1038/nnano.2006.170
5. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev.2004;104 (1):293–346.
6. Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol. 2004;31 (SUPPL. 13):196–205.doi:10.1053/j.seminoncol.2004.08.009
7. (7)Jurgons R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter. 2006;18(38):38. doi:10.1088/ 0953- 8984/18/38/S24
8. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282. doi:10.1039/c1cs15166e
9. Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res. 2006;67(1):47–54. doi:10.1002/ddr.20066
10. Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv J Deliv Target Ther Agents. 2004;11(3):169–183. doi:10.1080/ 10717540490433895
11. Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713–722. doi:10.1021/ mp060132k
12. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials. 2009;30(30):6065–6075. doi:10.1016/j.biomaterials.2009.07.048
13. Zarabi MF, Farhangi A, Mazdeh SK, et al. Synthesis of gold nanoparticles coated with aspartic acid and their conjugation with FVIII protein and FVIII antibody. Indian J Clin Biochem. 2014;29(2):154–160. doi:10.1007/s12291-013-0323-2
14. Kalimuthu K, Lubin BC, Bazylevich A, et al. Gold nanoparticles stabilize peptide-drug- conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnology. 2018;16(1). doi:10.1186/s12951-018-0362-1
15. Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev. 1999;99(7):1849–1862. doi:10.1021/cr970071p
16. Park C, Youn H, Kim H, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem. 2009;19(16):2310–2315. doi:10.1039/b816209c
17. Joshi P, Chakraborti S, Ramirez-Vick JE, et al. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces. 2012;95:195–200. doi:10.1016/j.colsurfb.2012.02.039
18. Schwert GW, Eisenberg MA. The kinetics of the amidase and esterase activities of trypsin. JBiol Chem. 1949;179(5):665–72.
19. Han K, Zhu JY, Wang SB, Li ZH, Cheng SX, Zhang XZ. Tumor targeted gold nanoparticlesfor FRET-based tumor imaging and light responsive on-demand drug release. J Mater Chem B.2015;3(41):8065–8069. doi:10.1039/c5tb01659
20. (20) Tangeysh B, Tibbetts KM, Odhner JH, Wayland BB, Levis RJ. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]. J Phys Chem C. 2013;117(36):18719–18727. doi:10.1021/jp4056494
21. (21) Birtcher RC, Kirk MA, Furuya K, Lumpkin GR. In situ transmission electron microscopy investigation of radiation effects. J Mater Res. 2005;20(7):1654–1683. doi:10.1557/ JMR.2005.0242
22. (22) Sakamoto M, Fujistuka M, Majima T. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C. 2009;10(1):33–56. doi:10.1016/j. jphotochemrev.2008.11.002
23. (23) Zhou Y, Wang CY, Zhu YR, Chen ZY. A novel ultraviolet irradiation technique for shape- controlled synthesis of gold nanoparticles at room temperature. Chem Mater. 1999;11(9):2310– doi:10.1021/cm990315h
24. (24) Krinke TJ, Deppert K, Magnusson MH, Schmidt F, Fissan H. Microscopic aspects of the deposition of nanoparticles from the gas phase. J Aerosol Sci. 2002;33(10):1341–1359. doi:10.1016/ S0021-8502(02)00074-5
25. (25) Turkevich J, Cooper PHJ. A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;55(c):55–75. doi:10.1039/df951110005
26. (26) Wangoo N, Bhasin KK, Mehta SK, Suri CR. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci. 2008;323(2):247–254. doi:10.1016/j.jcis.2008.04.043
27. (27) Niidome Y, Nishioka K, Kawasaki H, Yamada S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. ChemComm. 2003;18(18):2376–2377. doi:10.1039/ b307836a
28. (28) Pal A, Esumi K, Pal T. Preparation of nanosized gold particles in a biopolymer using UVphotoactivation. J Colloid Interface Sci. 2005;288(2):396–401.doi:10.1016/j.jcis.2005.03.048 (29)Kumar S, Gandhi KS, Kumar R. Modeling of formation of gold nanoparticles by citratemethod. Ind Eng Chem Res. 2007;46 (10):3128–3136. doi:10.1021/ie060672j
29. (30) Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241 (105):20–22. doi:10.1038/physci241020a0